0% Complete
Home
/
11th International Conference on Computer and Knowledge Engineering
Effect of Tissue Excitation in Breast Cancer Detection from Ultrasound RF Time Series: Phantom studies
Authors :
Elaheh Norouzi Ghehi
1
Ali Fallah
2
Saeid Rashidi
3
Maryam Mehdizadeh Dastjerdi
4
1- Ultrasound and Elastography group, Bimedical Engineering Faculty, Amirkabir university of Technology, Tehran, Iran
2- Bimedical Engineering Faculty, Amirkabir university of Technology, Tehran, Iran
3- Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
4- Ultrasound and Elastography group, Amirkabir university of Technology, Tehran, Iran
Keywords :
RF time series, tissue excitation, breast cancer, tissue classification, SVM classifiers.
Abstract :
Breast cancer is the most common women cancer. If the lesion and its type are diagnosed in the early stages, treatment will be more successful. Due to the lack of sufficient accuracy of each nowadays method to ensure the type of lesions, a biopsy is used which is invasive and imposes a lot of psychological and financial costs on the patient. Thus, it is necessary to consider a low-cost, non-radioactive and non-invasive method to determine the type of lesion. Recent studies on RF time series have shown that the interactions of this signal with tissue and echo patterns could provide useful information about the propagation environment. In this study, suggested extracting RF time series features in the progress of stimulating breast tissue. By extracting appropriate features from the RF time series, the effect of this interaction on the classification of healthy tissues, cancerous and non-cancerous lesions could also be observed. A Supersonic Imagine US system equipped with a linear probe was used to record this signal. Data were recorded from two types of agar-gelatin phantom mimicking breast tissue. Data collection was performed under a fixed probe, static and vibrational excitation. Finally, SVM classifiers have been used to classify healthy and cancerous tissues. The effect of central frequency on this classification has also been investigated. The results indicated that by applying vibrational excitation, tissue response characteristics are added more information to the RF time series and improve classification results. The best result was achieved by 6.4 central frequency ultrafast beamformed data with 98.78±2.77 % accuracy.
Papers List
List of archived papers
Generating Hand-Written Symbols With Trajectory Planning Using A Robotic Arm
Arya Parvizi - Armin Salimi-Badr
Forecasting El Niño Six Months in Advance Utilizing Augmented Convolutional Neural Network
Mohammad Naisipour - Iraj Saeedpanah - Arash Adib - Mohammad Hossein Neisi Pour
Spatial-channel attention-based stochastic neighboring embedding pooling and long short term memory for lung nodules classification
AHMED SAIHOOD - HOSSEIN KARSHENAS - AHMADREZA NAGHSH NILCHI
Enhancing Vehicle Make and Model Recognition with 3D Attention Modules
Narges Semiromizadeh - Omid Nejati Manzari - Shahriar B. Shokouhi - Sattar Mirzakuchaki
Classification of benign and malignant tumors in Digital Breast Tomosynthesis images using Radiomic-based methods
Farangis Sajadi moghadam - Saeid Rashidi
Farsi Optical Character Recognition Using a Transformer-based Model
Fatemeh Asadi Zeydabadi - Elham Shabaninia - Hossein Nezamabadi-pour - Melika Shojaee
Degarbayan-SC: A Colloquial Paraphrase Farsi Subtitles Dataset
Mohammad Javad Aghajani - Mohammad Ali Keyvanrad
A Deep Reinforcement Learning Approach Combining Technical and Fundamental Analyses with a Large Language Model for Stock Trading
Mahan Veisi - Sadra Berangi - Mahdi Shahbazi Khojasteh - Armin Salimi-Badr
Intelligent Rule Extraction in Complex Event Processing Platform for Health Monitoring Systems
Mohammad Mehdi Naseri - Shima Tabibian - Elaheh Homayounvala
Attention Transfer in Self-Regulated Networks for Recognizing Human Actions from Still Images
Masoumeh Chapariniya - Sara Vesali Barazande - Seyed Sajad Ashrafi - Shahriar B.Shokouhi
more
Samin Hamayesh - Version 42.2.1