0% Complete
Home
/
13th International Conference on Computer and Knowledge Engineering
Multi Model CNN Based Gas Meter Characters Recognition
Authors :
Sanaz Tarhib
1
Jafar Tanha
2
Soodabeh Imanzadeh
3
Sahar Hassanzadeh Mostafaei
4
1- Faculty of Electrical and Computer Engineering University of Tabriz
2- Faculty of Electrical and Computer Engineering University of Tabriz
3- Faculty of Electrical and Computer Engineering University of Tabriz
4- Faculty of Electrical and Computer Engineering University of Tabriz
Keywords :
Recognition،Detection،Convolutional Neural Network،Long Short-Term Memory،Gated Recurrent Unit
Abstract :
The recognition and extraction of text from natural scene images is a highly challenging task in the field of computer vision. Convolutional neural networks (CNNs) have been shown to be highly effective in recognizing characters and words from images as they can perceive the structural patterns of characters and words. This makes CNNs one of the most suitable approaches for solving recognition problems, such as text recognition in natural scene images. In this study, we aim to recognize numerical texts from images and employ three models for this task: CNN models, a combination of CNN-LSTM models, and a combination of CNN-GRU models. The dataset used in this study comprises images taken from gas meters, which were collected by our team using different phones at different times. Our results show that the accuracy achieved by the CNN, CNN-LSTM, and CNN-GRU models in recognizing numerical texts from images is 72.9%, 96.6%, and 97.63%, respectively. These findings suggest that the CNN-LSTM and CNN-GRU models are highly effective in recognizing numerical texts in images, with the CNN-GRU model exhibiting the highest accuracy. Overall, these results demonstrate the potential of using deep learning models for recognizing numerical texts in images, particularly the combination of CNN and Gated recurrent unit (GRU) models.
Papers List
List of archived papers
A Hybrid Echo State Network for Hypercomplex Pattern Recognition, Classification, and Big Data Analysis
Mohammad Jamshidi - Fatemeh Daneshfar
Analysis of Address Lifespans in Bitcoin and Ethereum
Amir Mohammad Karimi Mamaghan - Amin Setayesh - Behnam Bahrak
An Energy-efficient Clustering Method based on Butterfly Optimization Algorithm by Considering the Criterion of Intra-cluster Distances in WSNs
Fariba Saghi Hadi S. Aghdasi
Hybrid navigation based on GPS data and SIFT-based place recognition using Biologically-inspired SLAM
Sahar Salimpour Kasebi - Hadi Seyedarabi - Javad Musevi Niya
Attention Transfer in Self-Regulated Networks for Recognizing Human Actions from Still Images
Masoumeh Chapariniya - Sara Vesali Barazande - Seyed Sajad Ashrafi - Shahriar B.Shokouhi
R2-BAC: A Novel Blockchain and IoT-Based Access Control Model for Supply Chain Management
Sadegh Sohani - Farnaz Kamranfar - Haleh Amintoosi - Mohammad Allahbakhsh
An Overview of Regression Methods in Early Prediction of Movie Ratings
Houmaan Chamani - Zhivar Sourati Hassanzadeh - Behnam Bahrak
Towards Efficient Video Object Detection on Embedded Devices
Mohammad Hajizadeh - Adel Rahmani - Mohammad Sabokrou
A novel hybrid DMHS-GMDH algorithm to predict COVID-19 pandemic time series
Ahmad Taheri - Shahriar Ghashghaei - Amin Beheshti - Keyvan RahimiZadeh
Density Estimation Helps Adversarial Robustness
Afsaneh Hasanebrahimi - Bahareh Kaviani Baghbaderani - Reshad Hosseini - Ahmad Kalhor
more
Samin Hamayesh - Version 41.3.1