0% Complete
Home
/
13th International Conference on Computer and Knowledge Engineering
Multi Model CNN Based Gas Meter Characters Recognition
Authors :
Sanaz Tarhib
1
Jafar Tanha
2
Soodabeh Imanzadeh
3
Sahar Hassanzadeh Mostafaei
4
1- Faculty of Electrical and Computer Engineering University of Tabriz
2- Faculty of Electrical and Computer Engineering University of Tabriz
3- Faculty of Electrical and Computer Engineering University of Tabriz
4- Faculty of Electrical and Computer Engineering University of Tabriz
Keywords :
Recognition،Detection،Convolutional Neural Network،Long Short-Term Memory،Gated Recurrent Unit
Abstract :
The recognition and extraction of text from natural scene images is a highly challenging task in the field of computer vision. Convolutional neural networks (CNNs) have been shown to be highly effective in recognizing characters and words from images as they can perceive the structural patterns of characters and words. This makes CNNs one of the most suitable approaches for solving recognition problems, such as text recognition in natural scene images. In this study, we aim to recognize numerical texts from images and employ three models for this task: CNN models, a combination of CNN-LSTM models, and a combination of CNN-GRU models. The dataset used in this study comprises images taken from gas meters, which were collected by our team using different phones at different times. Our results show that the accuracy achieved by the CNN, CNN-LSTM, and CNN-GRU models in recognizing numerical texts from images is 72.9%, 96.6%, and 97.63%, respectively. These findings suggest that the CNN-LSTM and CNN-GRU models are highly effective in recognizing numerical texts in images, with the CNN-GRU model exhibiting the highest accuracy. Overall, these results demonstrate the potential of using deep learning models for recognizing numerical texts in images, particularly the combination of CNN and Gated recurrent unit (GRU) models.
Papers List
List of archived papers
Camouflage Object Segmentation with Attention-Guided Pix2Pix and Boundary Awareness
Erfan Akbarnezhad Sany - Fatemeh Naserizadeh - Parsa Sinichi - Seyyed Abed Hosseini
A scalable blockchain-based educational network for data storage and assessment
Maryam Fattahi Vanani - Hamidreza Shayegh Borujeni - Ali Nourollah
Improving LoRaWAN Scalability for IoT Applications using Context Information
Hamed Mahmoudi - Behrouz ShahgholiGhahfarokhi
Real-Time Gender Recognition with a Deep Neural Network
Samad Azimi Abriz - Majid Meghdadi
A parallel CNN-BiGRU network for short-term load forecasting in demand-side management
Arghavan Irankhah - Sahar Rezazadeh Saatlou - Mohammad Hossein Yaghmaee - Sara Ershadi-Nasab - Mohammad Alishahi
Mitochondrial Segmentation in Microscopy Images Using UNet-VGG19
Zerek Sediq Hossein - Rojiar Pir Mohammadiani - Saadat Izadi
Leveraging a structure-based and learning-based predictor using various feature groups in bioinformatics (case study: protein-peptide region residue-level interaction)
Shima Shafiee - Abdolhossein Fathi
AI-Driven Relocation Tracking in Dynamic Kitchen Environments
Arash Nasr Esfahani - Hamed Hosseini - Mehdi Tale Masouleh - Ahmad Kalhor - Hedieh Sajedi
Extracting Major Topics of COVID-19 Related Tweets
Faezeh Azizi - Hamed Vahdat-Nejad - Hamideh Hajiabadi - Mohammad Hossein Khosravi
T-Rank: Graph Data Analytics for Urban Traffic Modeling
Alireza Safarpour - Iman Gholampour - Amirhossain Aghazadeh Fard - Seyed Mohammad Karbasi
more
Samin Hamayesh - Version 42.2.1