0% Complete
Home
/
11th International Conference on Computer and Knowledge Engineering
ROCT-Net: A new ensemble deep convolutional model with improved spatial resolution learning for detecting common diseases from retinal OCT images
Authors :
Mohammad Rahimzadeh
1
Mahmoud Reza Mohammadi
2
1- FaraAI Company
2- FaraAI Company
Keywords :
Optical Coherence Tomography, OCT Image Classification, Retinal Disease, CAD System, Convolutional Neural Network, Ensemble Learning, Spatial Resolution Learning, Capsule Network
Abstract :
Optical coherence tomography (OCT) imaging is a well-known technology for visualizing retinal layers and helps ophthalmologists to detect possible diseases. Accurate and early diagnosis of common retinal diseases can prevent the patients from suffering critical damages to their vision. Computer-aided diagnosis (CAD) systems can significantly assist ophthalmologists in improving their examinations. This paper presents a new enhanced deep ensemble convolutional neural network for detecting retinal diseases from OCT images. Our model generates rich and multi-resolution features by employing the learning architectures of two robust convolutional models. Spatial resolution is a critical factor in medical images, especially the OCT images that contain tiny essential points. To empower our model, we apply a new post-architecture model to our ensemble model for enhancing spatial resolution learning without increasing computational costs. The introduced post-architecture model can be deployed to any feature extraction model to improve the utilization of the feature map’s spatial values. We have collected two open-source datasets for our experiments to make our models capable of detecting six crucial retinal diseases: Age-related Macular Degeneration (AMD), Central Serous Retinopathy (CSR), Diabetic Retinopathy (DR), Choroidal Neovascularization (CNV), Diabetic Macular Edema (DME), and Drusen alongside the normal cases. Our experiments on two datasets and comparing our model with some other well-known deep convolutional neural networks have proven that our architecture can increase the classification accuracy up to 5%. We hope that our proposed methods create the next step of CAD systems development and help future researches.
Papers List
List of archived papers
Evaluating the Impact of Traveling on COVID-19 Prevalence and Predicting the New Confirmed Cases According to the Travel Rate Using Machine Learning: A Case Study in Iran
Anita Ghandehari - Soheil Shirvani - Hadi Moradi
Sum Rate Analysis and Power Allocation in Massive MIMO Systems with Power Constraints
Abdolrasoul Sakhaei Gharagezlou - Mahdi Nangir
IranITJobs2021: a Dataset for Analyzing Iranian Online IT Job Advertisements Collected Using a New Crowdsourcing Process
Fakhroddin Noorbehbahani - Nikta Akbarpour - Mohammad Reza Saeidi
Diagnosis of Depression Based on New Features Extractive from the Frequency Space of the EEG
Melika Changizi - Saeid Rashidi
Two-step thermal-aware routing algorithm in 3D NoC
Majid Nezarat - Masoume Momeni
Improved TrustChain for Lightweight Devices
Seyed Salar Ghazi - Haleh Amintoosi
Adversarial Robustness Evaluation with Separation Index
Bahareh Kaviani Baghbaderani - Afsaneh Hasanebrahimi - Ahmad Kalhor - Reshad Hosseini
A Cloud Broker with Gap Analysis Perspective for Scheduling Multi-Workflows Across On-Demand and Reserved Resources
Negin Shafinezhad - Hamidreza Abrishami - Saeid Abrishami
A Federated Learning-Based Hybrid Deep Learning Framework for Enhanced Human Activity Recognition
Jamileh Azmoudeh - Sajjad Arghaee - Parisa Valizadeh - Samaneh Dandani - Iman Havangi - Mohammad Hossein Yaghmaee
Adaptive-A-GCRNN: Enhancing Real-time Multi-band Spectrum Prediction through Attention-based Spatial-Temporal Modeling
Seyed majid Hosseini - Seyedeh Mozhgan Rahmatinia - Seyed Amin Hosseini Seno - Hadi Sadoghi yazdi
more
Samin Hamayesh - Version 42.4.1