0% Complete
Home
/
13th International Conference on Computer and Knowledge Engineering
Information Theoretic Learning-based Deep Embedded Clustering (ITL-DEC)
Authors :
Hoda Shad
1
Mona Zamiri
2
Tahereh Bahreini
3
Reza Monsefi
4
Ghoshe Abed Hodtani
5
1- Computer Engineering Department Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Azadi Square, Mashad, Iran
2- Computer Engineering Department Faculty of Wayne State University
3- Department of Electrical Engineering Ferdowsi University of Mashhad Mashhad, Iran
4- Computer Engineering Department Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Azadi Square, Mashad, Iran
5- Department of Electrical Engineering Ferdowsi University of Mashhad Mashhad, Iran
Keywords :
Clustering،Deep Neural Networks،Autoencoder،Representation Learning،Unsupervised Learning،Cauchy-Schwarz Divergence،Jenson-shanon Divergence،Deep Clustering
Abstract :
Clustering as the best grouping algorithm for the data sets is a fundamental problem in many data-driven scientific and real-world applications. There are several methods based on some similarity measures for clustering, all suffering from high computational complexity on large-scale datasets. Clustering performance highly depends on the quality of data representation; hence, in the literature, various linear and nonlinear representation methods and deep learning-based clustering algorithms have been exploited. This paper presents a novel fully unsupervised deep clustering method with end-to-end training capable of simultaneously learning feature representations and cluster assignments using deep neural networks. We use autoencoder as our powerful feature extraction deep neural network and two information-theoretic divergence measures, Cauchy-Schwarz divergence and Jensen-Shannon divergence, as cost functions to train the network parameter and appropriate clustering feature space. Experiments performed on the benchmark data sets validate the effectiveness of the proposed method.
Papers List
List of archived papers
AI-Driven Relocation Tracking in Dynamic Kitchen Environments
Arash Nasr Esfahani - Hamed Hosseini - Mehdi Tale Masouleh - Ahmad Kalhor - Hedieh Sajedi
Parallel Local Feature Selection For High-dimensional Data
Zhaleh Manbari - Chiman Salavati - Fardin AkhlaghianTab - Barzan Saeedpoor - Himan Delbina - Mahmud Abdulla Mohammad
Improvement of Credit Scoring by LSTM Autoencoder Model
Milad Sattari Maleki - Seyedeh Niusha Motevallian - Faezehsadat Hosseini - Mohammad Sabokrou - Hamidreza Soltanalizadeh Maleki
Explainable Error Detection Method for Structured Data using HoloDetect framework
Abolfazl Mohajeri Khorasani - Sahar Ghassabi - Behshid Behkamal - Mostafa Milani
Enhancing Lighter Neural Network Performance with Layer-wise Knowledge Distillation and Selective Pixel Attention
Siavash Zaravashan - Sajjad Torabi - Hesam Zaravashan
Information Theoretic Learning-based Deep Embedded Clustering (ITL-DEC)
Hoda Shad - Mona Zamiri - Tahereh Bahreini - Reza Monsefi - Ghoshe Abed Hodtani
Evaluating the Impact of Traveling on COVID-19 Prevalence and Predicting the New Confirmed Cases According to the Travel Rate Using Machine Learning: A Case Study in Iran
Anita Ghandehari - Soheil Shirvani - Hadi Moradi
African Vultures Optimization Algorithm for Optimal Damping Controllers Design in the Electrical Power Grid System
Aliyu Sabo - Theophilus Ebuka Odoh - Samuel Habu - Hossein Shahinzadeh - Farshad Ebrahimi
Analyzing the Impact of COVID-19 on Economy from the Perspective of User’s Reviews
Fatemeh Salmani - Hamed Vahdat-Nejad - Hamideh Hajiabadi
Enhancing Persian Word Sense Disambiguation with Large Language Models: Techniques and Applications
Fatemeh Zahra Arshia - Saeedeh Sadat Sadidpour
more
Samin Hamayesh - Version 42.4.1