0% Complete
Home
/
14th International Conference on Computer and Knowledge Engineering
Bridging the Synthetic-to-Real Gap (BSRG): Creating Simulated Datasets for Domain Adaptation to Enhance Vehicle Detection
Authors :
Behnaz Sadeghigol
1
Mohammad Ali Keyvanrad
2
1- Faculty of Electrical & Computer Engineering Malek Ashtar University of Technology
2- Faculty of Electrical & Computer Engineering Malek Ashtar University of Technology
Keywords :
Synthetic dataset،Unreal Engine،Object detection،Domain adaptation،Transfer learning،JLTV dataset
Abstract :
Deep neural network based military vehicle detectors pose particular challenges due to the scarcity of relevant images and limited access to vehicles in this domain. Moreover, Real-world data often poses significant challenges, including privacy, availability, and bias. To mitigate these challenges, synthetic datasets can be leveraged. This article explores the efficacy of synthetic datasets in training state-of-the-art object detection models, specifically focusing on the Joint Light Tactical Vehicle (JLTV). Using the powerful Unreal Engine, which can create highly realistic scenes, we generated a comprehensive synthetic dataset designed to simulate real-world conditions and enhance the training process for various detection algorithms. In this study, we evaluate two distinct models for object recognition: an enhanced domain matching approach utilizing the Masked Image Consistency (MIC) framework and an unsupervised domain matching approach employing confidence-based mixing (ConfMix). The MIC model achieved a mean Average Precision (mAP) at 50% of 47% on real-world data, while the ConfMix model attained a mAP@50 of 55%. These results underscore the pivotal role of synthetic data in advancing object recognition technologies. They also highlight potential research directions for improving synthetic dataset generation and enhancing model performance in practical applications. Examples of this dataset can be accessed at: https://github.com/behnaz-sadeghigol/JLTV_dataset.
Papers List
List of archived papers
SUT: a new multi-purpose synthetic dataset for Farsi document image analysis
Elham Shabaninia - Fatemeh sadat Eslami - Ali Afkari Fahandari - Hossein Nezamabadi-pour
Farsi Optical Character Recognition Using a Transformer-based Model
Fatemeh Asadi Zeydabadi - Elham Shabaninia - Hossein Nezamabadi-pour - Melika Shojaee
City Intersection Clustering and Analysis Based on Traffic Time Series
Mohammad Aminazadeh - Fakhroddin Noorbehbahani
A Systematic Embedded Software Design Flow for Robotic Applications
Navid Mahdian - Seyed-Hosein Attarzadeh-Niaki - Armin Salimi-Badr
Mitochondrial Segmentation in Microscopy Images Using UNet-VGG19
Zerek Sediq Hossein - Rojiar Pir Mohammadiani - Saadat Izadi
FarCQA: A Farsi Community Dataset for Question Classification and Answer Selection
Saba Emami - Maedeh Mosharraf
Standardized ReACT Logits: An Effective Approach for Anomaly Segmentation in Self-driving Cars
Mahdi Farhadi - Seyede Mahya Hazavei - Shahriar Baradaran Shokouhi
Explainable Error Detection Method for Structured Data using HoloDetect framework
Abolfazl Mohajeri Khorasani - Sahar Ghassabi - Behshid Behkamal - Mostafa Milani
Cardiology Disease Diagnosis by Analyzing Histological Microscopic Images Using Deep Learning
Maria Salehpanah - Jafar Tanha - Zahra Jafari - SeyedEhsan Roshan - Sajad Rezaei
Leveraging the Power of Object Detection Models in Identifying Litter for a Significant Reduction in Environmental Pollution
Lim Zhen Xian - Ervin Gubin Moung - Jason Teo Tze Wi - Nordin Saad - Farashazillah Yahya - Tiong Lin Rui - Ali Farzamnia
more
Samin Hamayesh - Version 41.5.3