0% Complete
Home
/
13th International Conference on Computer and Knowledge Engineering
Standardized ReACT Logits: An Effective Approach for Anomaly Segmentation in Self-driving Cars
Authors :
Mahdi Farhadi
1
Seyede Mahya Hazavei
2
Shahriar Baradaran Shokouhi
3
1- School of Electrical Engineering Iran University of Science and Technology Tehran, Iran
2- School of Electrical Engineering Iran University of Science and Technology Tehran, Iran
3- School of Electrical Engineering Iran University of Science and Technology Tehran, Iran
Keywords :
anomaly segmentation،autonomous driving،semantic segmentation
Abstract :
The identification of unexpected road objects is a crucial aspect in the field of autonomous driving. Various methods have been proposed for anomaly segmentation, which can be categorized into three important categories: the use of auxiliary datasets, the utilization of uncertainty maps, and the reconstruction networks. In this study, the DeepLabv3+ network serves as the primary semantic segmentation model. We calculate the energy function, a type of uncertainty, before the output of the upsampling layer and employ it as an anomaly score. Unlike samples within the distribution, samples outside the distribution do not exhibit deviations from the standard criteria in terms of the distribution of these values. To address this issue, we use the ReAcT operator, which replaces values exceeding a threshold with the threshold value, leading to improved performance. The proposed method enhances the performance of anomaly segmentation by incorporating a single step of standardizing anomaly scores and considering the semantic dependencies of pixels in each region. This is achieved through two steps: Iterative Boundary Suppression and Dilated Smoothing. Evaluation on three common datasets in the field, namely Fishyscapes Lost & Found, Fishyscapes Static, and Road Anomaly, demonstrates the method's robustness in anomaly segmentation without the need for auxiliary datasets or network retraining.
Papers List
List of archived papers
XAI for Transparent Autonomous Vehicles: A New Approach to Understanding Decision-Making in Self-driving Cars
Maryam Sadat Hosseini Azad - Amir Abbas Hamidi Imani - Shahriar Baradaran Shokouhi
A Cost-Sensitive Genetic Algorithm for Customer Segmentation in Auto Insurances
Alireza Khajenoori - Mohammad Saniee Abadeh - Mohsen Mohammadzadeh
A Deep Reinforcement Learning Approach Combining Technical and Fundamental Analyses with a Large Language Model for Stock Trading
Mahan Veisi - Sadra Berangi - Mahdi Shahbazi Khojasteh - Armin Salimi-Badr
A Genetic-based Fusion Approach of Persian and Universal Phonetic results for Spoken Language Identification
Ashkan Moradi - Yasser Shekofteh - Saeed Zarei
Forecasting El Niño Six Months in Advance Utilizing Augmented Convolutional Neural Network
Mohammad Naisipour - Iraj Saeedpanah - Arash Adib - Mohammad Hossein Neisi Pour
To Transfer or Not To Transfer (TNT): Action Recognition in Still Image Using Transfer Learning
Ali Soltani Nezhad - Hojat Asgarian Dehkordi - Seyed Sajad Ashrafi - Shahriar Baradaran Shokouhi
Multi-Layer Collaborative Graph with BPR Similarity Embedding for Recommender System
Mostafa Ghorbani - Azadeh Mansouri
HiCAP: Hierarchical Clustering-based Attention Pooling for Graph Representation Learning
Parsa Haddadian - Rooholah Abedian - Ali Moeini
Optimizing MR Image Registration for Accurate Brain Volume Measurement in Children with Autism Spectrum Disorder
Shiva Sanati - Mahdi Saadatmand
Automatic Generation of XACML Code using Model-Driven Approach
Athareh Fatemian - Bahman Zamani - Marzieh Masoumi - Mehran Kamranpour - Behrouz Tork Ladani - Shekoufeh Kolahdouz Rahimi
more
Samin Hamayesh - Version 42.2.1