0% Complete
Home
/
13th International Conference on Computer and Knowledge Engineering
Community-Based QoE Enhancement for User-Generated Content Live Streaming
Authors :
Reza Saeedinia
1
S.Omid Fatemi
2
Daniele Lorenzi
3
Farzad Tashtarian
4
Christian Timmerer
5
1- ECE Department University of Tehran
2- ECE Department University of Tehran
3- Alpen-Adria-Universitat at Klagenfurt, Austria
4- Alpen-Adria-Universitat at Klagenfurt, Austria
5- Alpen-Adria-Universitat at Klagenfurt, Austria
Keywords :
User-generated content،live streaming،community detection algorithm،quality of experience،resource allocation
Abstract :
Live user-generated content (UGC) has increased significantly in video streaming applications. Improving the quality of experience (QoE) for users is a crucial consideration in UGC live streaming, where a user can be both a subscriber and a streamer. Resource allocation is an NP-complete task in UGC live streaming due to many subscribers and streamers with varying requests, bandwidth limitations, and network constraints. In this paper, to decrease the execution time of the resource allocation algorithm, we first process streamers’ and subscribers’ requests and then aggregate them into a limited number of groups based on their preferences. Second, we perform resource allocation for these groups that we call communities. We formulate the resource allocation problem for communities into an optimization problem. With an efficient aggregation of subscribers and streamers at the core of the proposed architecture, the computational complexity of the optimization problem is reduced, consequently improving QoE. This improvement occurs because of the prompt reaction to the bandwidth fluctuations and, subsequently, appropriate resource allocation by the proposed model. We conduct experiments in various scenarios. The results show an average of 41% improvement in execution time. To evaluate the impact of bandwidth fluctuations on the proposed algorithm, we employ two network traces: AmazonFCC and NYUBUS. The results show 4%, and 28% QoE improvement in a scenario with 5 streamers over the AmazonFCC and the NYUBUS network traces, respectively.
Papers List
List of archived papers
Investigation of topological characteristics of Iranian railway network: A network science approach
Sina Firuzbakht - Mohammad Khansari
Improving LoRaWAN Scalability for IoT Applications using Context Information
Hamed Mahmoudi - Behrouz ShahgholiGhahfarokhi
Hybrid Vision Transformer for Detection of Dentigerous Cysts in Dental Radiography Images
Reza Tavasoli - Arya VarastehNezhad - Hamed Farbeh
Cross-project Defect Prediction with An Enhanced Transfer Boosting Algorithm
Nazgol Nikravesh - Mohammad Reza Keyvanpour
Lightweight Local Transformer for COVID-19 Detection Using Chest CT Scans
Hojat Asgarian Dehkordi - Hossein Kashiani - Amir Abbas Hamidi Imani - Shahriar Baradaran Shokouhi
A Genetic-based Fusion Approach of Persian and Universal Phonetic results for Spoken Language Identification
Ashkan Moradi - Yasser Shekofteh - Saeed Zarei
Facial Mask Wearing Condition Detection Using SSD MobileNetV2
Amirhossein Tighkhorshid - Yasamin Borhani - Javad Khoramdel - Esmaeil Najafi
Islamic Geometric algorithms: A survey
Elham Akbari - Azam Bastanfard
Pruning and Mixed Precision Techniques for Accelerating Neural Network
Mahsa Zahedi - Mohammad Sediq Abazari Bozhgani - Abdorreza Savadi
A Review on Machine Learning Methods for Workload Prediction in Cloud Computing
Mohammad Yekta - Hadi Shahriar Shahhoseini
more
Samin Hamayesh - Version 41.7.6