0% Complete
Home
/
12th International Conference on Computer and Knowledge Engineering
AVID: A VARIATIONAL INFERENCE DELIBERATION FOR META-LEARNING
Authors :
Alireza Javaheri
1
Arsham Gholamzadeh Khoee
2
Saeed Reza Kheradpisheh
3
Hadi Farahani
4
Mohammad Ganjtabesh
5
1- Department of Computer Sciences, Shahid Beheshti University, G.C., Tehran, Iran
2- Department of Computer Science, School of Mathematics, Statistics, and Computer Science, University of Tehran, Tehran, Iran
3- Department of Computer Sciences, Shahid Beheshti University, G.C., Tehran, Iran
4- Department of Computer Sciences, Shahid Beheshti University, G.C., Tehran, Iran
5- Department of Computer Science, School of Mathematics, Statistics, and Computer Science, University of Tehran, Tehran, Iran
Keywords :
Machine Learning،Meta-Learning،Few-shot Learning،Deep Learning،Variational Inference،Bayesian Methods
Abstract :
Meta-learning techniques enable quick learning of new tasks by using few samples with utilizing prior knowledge learned from previous tasks. Gradient-based models are widely used because of their simplicity and ability to solve a wide range of problems. However, they only succeed in solving tasks with a very similar structure since they adapt the model with a shared meta-parameter across all tasks. In recent years, some models have been proposed to enhance the gradient-based models to deal with task uncertainty and heterogeneity via sharing knowledge among similar tasks by using task clustering. Nevertheless, the high-dimensional parameter space of gradient-based models hinders them from achieving their full potential in low-data regimes. Bayesian meta-learning algorithms address this issue by learning a data-dependent latent generative representation of model parameters. Our proposed model bypasses the aforementioned limitations by leveraging Bayesian algorithms as well as clustering input tasks. The final analysis demonstrates the effectiveness of the proposed model for few-shot image classification problems.
Papers List
List of archived papers
An Exploratory Study of the Relationship between SATD and Other Software Development Activities
Shima Esfandiari - Ashkan Sami
Early detection of Parkinson’s disease using Convolutional Neural Networks on SPECT images
Reyhaneh Dehghan - Marjan Naderan - Seyyed Enayatallah Alavi
Multi-Layer Collaborative Graph with BPR Similarity Embedding for Recommender System
Mostafa Ghorbani - Azadeh Mansouri
Detecting Non-Spherical Clusters Using Modified CURE Algorithm
Arezou Safdari - Pedram Salehpour
A novel hybrid DMHS-GMDH algorithm to predict COVID-19 pandemic time series
Ahmad Taheri - Shahriar Ghashghaei - Amin Beheshti - Keyvan RahimiZadeh
Analyzing the Impact of COVID-19 on Economy from the Perspective of User’s Reviews
Fatemeh Salmani - Hamed Vahdat-Nejad - Hamideh Hajiabadi
Identification of Botnets and Nodes Attacking Smart Cities by Majority Voting Mechanism and Feature Selection
Maliheh Araghchi - Nazbanoo Farzaneh
City Intersection Clustering and Analysis Based on Traffic Time Series
Mohammad Aminazadeh - Fakhroddin Noorbehbahani
Hate Sentiment Recognition System For Persian Language
Pegah Shams jey - Arash Hemmati - Ramin Toosi - Mohammad ali Akhaee
XAI for Transparent Autonomous Vehicles: A New Approach to Understanding Decision-Making in Self-driving Cars
Maryam Sadat Hosseini Azad - Amir Abbas Hamidi Imani - Shahriar Baradaran Shokouhi
more
Samin Hamayesh - Version 41.5.3