0% Complete
Home
/
12th International Conference on Computer and Knowledge Engineering
AVID: A VARIATIONAL INFERENCE DELIBERATION FOR META-LEARNING
Authors :
Alireza Javaheri
1
Arsham Gholamzadeh Khoee
2
Saeed Reza Kheradpisheh
3
Hadi Farahani
4
Mohammad Ganjtabesh
5
1- Department of Computer Sciences, Shahid Beheshti University, G.C., Tehran, Iran
2- Department of Computer Science, School of Mathematics, Statistics, and Computer Science, University of Tehran, Tehran, Iran
3- Department of Computer Sciences, Shahid Beheshti University, G.C., Tehran, Iran
4- Department of Computer Sciences, Shahid Beheshti University, G.C., Tehran, Iran
5- Department of Computer Science, School of Mathematics, Statistics, and Computer Science, University of Tehran, Tehran, Iran
Keywords :
Machine Learning،Meta-Learning،Few-shot Learning،Deep Learning،Variational Inference،Bayesian Methods
Abstract :
Meta-learning techniques enable quick learning of new tasks by using few samples with utilizing prior knowledge learned from previous tasks. Gradient-based models are widely used because of their simplicity and ability to solve a wide range of problems. However, they only succeed in solving tasks with a very similar structure since they adapt the model with a shared meta-parameter across all tasks. In recent years, some models have been proposed to enhance the gradient-based models to deal with task uncertainty and heterogeneity via sharing knowledge among similar tasks by using task clustering. Nevertheless, the high-dimensional parameter space of gradient-based models hinders them from achieving their full potential in low-data regimes. Bayesian meta-learning algorithms address this issue by learning a data-dependent latent generative representation of model parameters. Our proposed model bypasses the aforementioned limitations by leveraging Bayesian algorithms as well as clustering input tasks. The final analysis demonstrates the effectiveness of the proposed model for few-shot image classification problems.
Papers List
List of archived papers
Real-Time Vehicle Detection and Classification in UAV imagery Using Improved YOLOv5
Mohammad Hossein Hamzenejadi - Hadis Mohseni
Adversarial Robustness Evaluation with Separation Index
Bahareh Kaviani Baghbaderani - Afsaneh Hasanebrahimi - Ahmad Kalhor - Reshad Hosseini
A Chaotic Crow Search Algorithm for Overlapping Clustering
Mostafa Sabzekar - Seyed Vahid Mousavainejad
Hybrid Flow-Rule Placement Method of Proactive and Reactive in SDNs
Mohammadreza Khoobbakht - Mohammadreza Noei - Mohammadreza Parvizimosaed
Introducing E4MT and LMBNC: Persian pre-processing utilities
Zakieh Shakeri - Mehran Ziabary - Behrooz Vedadian - Fatemeh Azadi - Saeed Torabzadeh - Arian Atefi
Multi-source Ensemble Model for Scene Recognition
Amir Hossein Saleknia - Ahmad Ayatollahi
FGM Copula based Analysis of Coverage Region for Wireless Three-User Multiple Access Channel with Correlated Channel Coefficients
Mona Sadat Mohsenzadeh - Ghosheh Abed Hodtani
Leveraging Self-Supervised Models for Automatic Whispered Speech Recognition
Aref Farhadipour - Homa Asadi - Volker Dellwo
An Ensemble CNN for Brain Age Estimation based on Hippocampal Region Applicable to Alzheimer's Diagnosis
Zahra Qodrati - Seyedeh Masoumeh Taji - Habibollah Danyali - Kamran Kazemi
Pyramid Transformer for Traffic Sign Detection
Omid Nejati manzari - Amin Boudesh - Shahriar B. Shokouhi
more
Samin Hamayesh - Version 41.7.6