0% Complete
Home
/
12th International Conference on Computer and Knowledge Engineering
AVID: A VARIATIONAL INFERENCE DELIBERATION FOR META-LEARNING
Authors :
Alireza Javaheri
1
Arsham Gholamzadeh Khoee
2
Saeed Reza Kheradpisheh
3
Hadi Farahani
4
Mohammad Ganjtabesh
5
1- Department of Computer Sciences, Shahid Beheshti University, G.C., Tehran, Iran
2- Department of Computer Science, School of Mathematics, Statistics, and Computer Science, University of Tehran, Tehran, Iran
3- Department of Computer Sciences, Shahid Beheshti University, G.C., Tehran, Iran
4- Department of Computer Sciences, Shahid Beheshti University, G.C., Tehran, Iran
5- Department of Computer Science, School of Mathematics, Statistics, and Computer Science, University of Tehran, Tehran, Iran
Keywords :
Machine Learning،Meta-Learning،Few-shot Learning،Deep Learning،Variational Inference،Bayesian Methods
Abstract :
Meta-learning techniques enable quick learning of new tasks by using few samples with utilizing prior knowledge learned from previous tasks. Gradient-based models are widely used because of their simplicity and ability to solve a wide range of problems. However, they only succeed in solving tasks with a very similar structure since they adapt the model with a shared meta-parameter across all tasks. In recent years, some models have been proposed to enhance the gradient-based models to deal with task uncertainty and heterogeneity via sharing knowledge among similar tasks by using task clustering. Nevertheless, the high-dimensional parameter space of gradient-based models hinders them from achieving their full potential in low-data regimes. Bayesian meta-learning algorithms address this issue by learning a data-dependent latent generative representation of model parameters. Our proposed model bypasses the aforementioned limitations by leveraging Bayesian algorithms as well as clustering input tasks. The final analysis demonstrates the effectiveness of the proposed model for few-shot image classification problems.
Papers List
List of archived papers
Android Malware Detection using Supervised Deep Graph Representation Learning
Fatemeh Deldar - Mahdi Abadi - Mohammad Ebrahimifard
GAP: Fault tolerance Improvement of Convolutional Neural Networks through GAN-aided Pruning
Pouya Hosseinzadeh - Yasser Sedaghat - Ahad Harati
Energy-Aware Dynamic Digital Twin Placement in Mobile Edge Computing
Mahdi Hematyar - Zeinab Movahedi
FarCQA: A Farsi Community Dataset for Question Classification and Answer Selection
Saba Emami - Maedeh Mosharraf
An Overview of Regression Methods in Early Prediction of Movie Ratings
Houmaan Chamani - Zhivar Sourati Hassanzadeh - Behnam Bahrak
Decentralized Federated Learning in IoT Environments: A Hierarchical Approach
Majid Mohammadpour - Seyedakbar Mostafavi
Identifying novel disease genes based on protein complexes and biological features
Mahshad Hashemi - Eghbal Mansoori
Leveraging a structure-based and learning-based predictor using various feature groups in bioinformatics (case study: protein-peptide region residue-level interaction)
Shima Shafiee - Abdolhossein Fathi
Hybrid navigation based on GPS data and SIFT-based place recognition using Biologically-inspired SLAM
Sahar Salimpour Kasebi - Hadi Seyedarabi - Javad Musevi Niya
A Formalism for Specifying Capability-based Task Allocation in MAS
Samaneh HoseinDoost - Bahman Zamani - Afsaneh Fatemi
more
Samin Hamayesh - Version 42.2.1