0% Complete
Home
/
14th International Conference on Computer and Knowledge Engineering
Evolutionary Approach to GAN Hyperparameter Tuning: Minimizing Discriminator and Generator Loss Functions
Authors :
Sajad Haghzad Klidbary
1
Anahita Babaei
2
Ramin Ghorbani
3
1- University of Zanjan
2- university of za
3- University of Zanjan
Keywords :
Generative Adversarial Networks (GAN)،Optimization،Genetic Algorithm (GA)،d_loss،g_loss،MNIST
Abstract :
Image Reconstruction has always been among machine vision’s challenging topics. One of image restoration’s most challenging is to fill the damaged area after deleting, it in a visually acceptable way. The beginning of image reconstruction goes back to the last five decades, but due to the ineffectiveness of the basic methods, new methods have been offered. In the field of image restoration, GAN or Generative Adversarial Networks can be very useful due to the high similarity between the generated data and the training data. In this paper, by presenting an algorithm based on these networks, we try to increase the accuracy of the image restoration process. The GAN algorithm's accuracy is related to the correct selection of parameters. Using trial and error methods to find parameters is time-consuming and has problems. In this paper, the optimal parameters of the GAN algorithm have been used by providing suitable coding for the genetic algorithm. The simulation results represent that the proposed GA has notable performance. The best results give a minimum value of about 0.16 for the discriminator loss function and 0 for the generator loss function.
Papers List
List of archived papers
Taguchi Design of Experiments Application in Robust sEMG Based Force Estimation
Mohsen Ghanaei - Hadi Kalani - Alireza Akbarzadeh
TrackMine: Topic Tracking in Model Mining using Genetic Algorithm
Mohammad Sajad Kasaei - Mohammadreza Sharbaf - Afsaneh Fatemi - Bahman Zamani
Camouflage Object Segmentation with Attention-Guided Pix2Pix and Boundary Awareness
Erfan Akbarnezhad Sany - Fatemeh Naserizadeh - Parsa Sinichi - Seyyed Abed Hosseini
Forecasting El Niño Six Months in Advance Utilizing Augmented Convolutional Neural Network
Mohammad Naisipour - Iraj Saeedpanah - Arash Adib - Mohammad Hossein Neisi Pour
Real-Time Gender Recognition with a Deep Neural Network
Samad Azimi Abriz - Majid Meghdadi
Optimizing the controller placement problem in SDN with uncertain parameters with robust optimization
Mohammad Kazemi - AhmadReza Montazerolghaem
DPRNN-FORMER: AN EFFICIENT WAY TO DEAL WITH BLIND SOURCE SEPARATION
Ramin Ghorbani - Sajad Haghzad Klidbary
A Federated Learning-Based Hybrid Deep Learning Framework for Enhanced Human Activity Recognition
Jamileh Azmoudeh - Sajjad Arghaee - Parisa Valizadeh - Samaneh Dandani - Iman Havangi - Mohammad Hossein Yaghmaee
Farsi Optical Character Recognition Using a Transformer-based Model
Fatemeh Asadi Zeydabadi - Elham Shabaninia - Hossein Nezamabadi-pour - Melika Shojaee
Explainable Error Detection Method for Structured Data using HoloDetect framework
Abolfazl Mohajeri Khorasani - Sahar Ghassabi - Behshid Behkamal - Mostafa Milani
more
Samin Hamayesh - Version 41.7.6