0% Complete
Home
/
12th International Conference on Computer and Knowledge Engineering
Improving performance of multi-label classification using ensemble of feature selection and outlier detection
Authors :
Mohammad Ali Zarif
1
Javad Hamidzadeh
2
1- Sadjad University
2- Sadjad University
Keywords :
multi-label classification،outlier detection،dimension reduction،ensemble classification
Abstract :
Nowadays classification has become one of the most common techniques in machine learning. In classification, there are two types of data; single-label and multi-label. In multi-label datasets, one sample can have multiple labels at the same time. In recent years, classification of multi-label data has gained a lot of attention. Multi-label classification algorithms can be divided into 3 main parts: problem transformation methods, algorithm adaptation methods and ensemble methods. In problem transformation methods, classification of multi-label data is transformed to other fields. In algorithm adaptation methods, common single-label classification algorithms are changed so that they can deal with multi-label data. In third category, algorithms of two previous categories are combined together. Despite of many different proposed algorithms in this field, improvement of methods in terms of evaluation metrics has always been a challenge. Also, there is a lack of systems which can self-improve the base classifier. Thus, in this paper we try to present a novel ensemble system which can improve any classifier. The presented system has a novel structure which consists of two tree ensembles and each one has its own specific function. One of them has the task of removing noisy and outlier data with a novel approach and the other one has the task of removing noisy and redundant features. In one group some random samples are selected and in the other one, some random features are selected. If the evaluation metrics of the created child are improved, the algorithm can go to the next step and create its own child and if not, the parents create another child. Lastly, the results of these groups are combined together. The conducted experiments on 10 various datasets and 5 evaluation metrics show the superiority of the proposed method.
Papers List
List of archived papers
I-ACS: An Improved Ant Colony System to Solve the Time-Dependent Orienteering Problem
Zahra Bakhshandeh - Morteza Keshtkaran
YOLOatt-Med: YOLO-Based Attention Mechanism for Medical Image Classification
Fatemeh Naserizadeh - Erfan Akbarnezhad Sany - Parsa Sinichi - Seyyed Abed Hosseini
Optimization of quantum secret sharing communication using corresponding bits
Mahsa Khorrampanah - Mohammad Bolokian - Monireh Houshmand
Bipartite link prediction improvement using the effective utilization of edge betweenness centrality
Sadegh Sulaimany Sulaimany - Yasin Amini
Evaluating the Impact of Traveling on COVID-19 Prevalence and Predicting the New Confirmed Cases According to the Travel Rate Using Machine Learning: A Case Study in Iran
Anita Ghandehari - Soheil Shirvani - Hadi Moradi
A Novel Method For Fake News Detection Based on Propagation Tree
Mansour Davoudi - Mohammad Reza Moosavi - Mohammad Hadi Sadreddini
Hybrid Vision Transformer for Detection of Dentigerous Cysts in Dental Radiography Images
Reza Tavasoli - Arya VarastehNezhad - Hamed Farbeh
Blind Load-Balancing Algorithm using Double-Q-learning in the Fog Environment
Niloofar Tahmasebi pouya - Mehdi Agha Sarram
Designing a High Perfomance and High Profit P2P Energy Trading System Using a Consortium Blockchain Network
Poonia Taheri Makhsoos - Behnam Bahrak - Fattaneh Taghiyareh
Spatio-Temporal Graph Neural Networks for Accurate Crime Prediction
Rojan Roshankar - Mohammad Reza Keyvanpour
more
Samin Hamayesh - Version 41.5.3