0% Complete
Home
/
11th International Conference on Computer and Knowledge Engineering
Evaluating the Impact of Traveling on COVID-19 Prevalence and Predicting the New Confirmed Cases According to the Travel Rate Using Machine Learning: A Case Study in Iran
Authors :
Anita Ghandehari
1
Soheil Shirvani
2
Hadi Moradi
3
1- University of Tehran
2- University of Tehran
3- University of Tehran
Keywords :
COVID-19 pandemic, supervised machine learning, data correlation, importance analysis, COVID-19 epidemiological characteristics, virus prevalence prediction, traveling effects
Abstract :
COVID-19 which has spread in Iran from February 19, 2020, infected 1,550,142 people and killed 59,264 people until February 18, 2021. The immediate suggested solution to prevent the spread of this virus was to avoid traveling around. Unfortunately, on many occasions, this restriction was not enforced or respected by the citizens. Thus, the goal of this study was to evaluate the impact of traveling on the COVID-19 prevalence by measuring the correlation between traveling data and new confirmed cases of COVID-19 in Iran. The data consists of the daily traffic between Iran’s provinces, air traffic, and daily COVID-19 new confirmed cases. In the first step, the importance analysis was used to determine the impact of different kinds of traveling on the COVID-19 spread. In the second step, KNN, Random Forest (RF), and Support Vector Regression (SVR) were used to predict the effect of traveling on the number of new COVID-19 cases. Although the available data was very coarse and there were no details of inner-cities commute, an R-squared of 0.89 and 0.86 on the train and test datasets was achieved respectively, showing a positive correlation between the number of travels between states and the new confirmed cases of COVID-19. It was also shown that there was an 8-day incubation period. Consequently, by considering this period the voting regressor model reached 0.92 and 0.98 R2 scores for test and train datasets respectively. The result confirms that one of the best ways to avoid the spread of the virus is limiting or eliminating traveling around.
Papers List
List of archived papers
Optimizing Foreign Exchange Trading Performance Through Reinforcement Machine Learning Framework
Ervin Gubin Moung - Hani Yasmin Binti Murnizam - Maisarah Mohd Sufian - Valentino Liaw - Ali Farzamnia - Lorita Angeline
Generating Hand-Written Symbols With Trajectory Planning Using A Robotic Arm
Arya Parvizi - Armin Salimi-Badr
Enhancing Lighter Neural Network Performance with Layer-wise Knowledge Distillation and Selective Pixel Attention
Siavash Zaravashan - Sajjad Torabi - Hesam Zaravashan
R2-BAC: A Novel Blockchain and IoT-Based Access Control Model for Supply Chain Management
Sadegh Sohani - Farnaz Kamranfar - Haleh Amintoosi - Mohammad Allahbakhsh
Designing a High Perfomance and High Profit P2P Energy Trading System Using a Consortium Blockchain Network
Poonia Taheri Makhsoos - Behnam Bahrak - Fattaneh Taghiyareh
Sum Rate Analysis and Power Allocation in Massive MIMO Systems with Power Constraints
Abdolrasoul Sakhaei Gharagezlou - Mahdi Nangir
Investigating the Behavior of Generation Z Customers in Online Banking Services (Case Study of a Bank of Iran)
Elham Mahmoudabadi - Esmaeil Mollaahmadi
Degarbayan-SC: A Colloquial Paraphrase Farsi Subtitles Dataset
Mohammad Javad Aghajani - Mohammad Ali Keyvanrad
Automating Theory of Mind Assessment with a LLaMA-3-Powered Chatbot: Enhancing Faux Pas Detection in Autism
Avisa Fallah - Ali Keramati - Mohammad Ali Nazari - Fatemeh Sadat Mirfazeli
Histopathology Image-Based Cancer Classification Utilizing Transfer Learning Approach
Amir Meydani - Alireza Meidani - Ali Ramezani - Maryam Shabani - Mohammad Mehdi Kazeminasab - Shahriar Shahablavasani
more
Samin Hamayesh - Version 42.2.1