0% Complete
Home
/
14th International Conference on Computer and Knowledge Engineering
Attention-Boosted Ensemble of Pre-trained Convolutional Neural Networks for Accurate Diabetic Retinopathy Detection
Authors :
Benyamin Mirab Golkhatmi
1
Mohammad Hossein Moattar
2
1- Department of Computer Engineering Mashhad Branch, Islamic Azad University Mashhad, Iran
2- Department of Computer Engineering Mashhad Branch, Islamic Azad University Mashhad, Iran
Keywords :
Diabetic retinopathy،Deep transfer learning،Fine-tuning،Model ensemble،EfficientNetB0،EfficientNetB1،Attention mechanism
Abstract :
Early and accurate detection of diabetic retinopathy (DR) is crucial for preserving vision. Extracting informative and global features that facilitate precise and reliable decision-making is essential. Convolutional neural networks (CNNs), known for their high accuracy, are well-suited for this application. However, these models are susceptible to data scarcity, a challenge that can be mitigated through transfer learning. Additionally, model ensembles have proven effective in similar domains. This study proposes the use of two pre-trained CNNs from the EfficientNet family, specifically EfficientNetB0 and EfficientNetB1, in conjunction, and combines the features from both models to enhance decision-making. A Multi-Head Attention layer is incorporated to extract global and region-independent features, further improving representation. Consequently, the model can focus on the most critical areas of the image, thereby increasing detection accuracy. The proposed approach is evaluated on two datasets, yielding impressive results in binary classification (DR or No-DR) on the IDRiD dataset, it achieved an accuracy of 99.07% and an F1 score of 99.02%, while on the APTOS dataset, it attained an accuracy of 99.19% and an F1 score of 99.07%. These findings illustrate the effectiveness of combining CNNs with attention mechanisms for the accurate and timely diagnosis of DR.
Papers List
List of archived papers
Load Frequency Control of Geothermal Power Plant Incorporated Two-Area Hydro-Thermal System with AC-DC Lines
Shanker J Gambhire - Malligunta Kiran Kumar - Hossein Shahinzadeh - Mohammad-hossein Fayaz-dastgerdi - B. Srikanth Goud - Ch.Naga sai Kalyan
Classification of COVID-19 and Nodule in CT Images using Deep Convolutional Neural Network
Amirhossein Ghaemi - Seyyed Amir Mousavi mobarakeh - Habibollah Danyali - Kamran Kazemi
Damage Detection After the Earthquake Using Sentinel-1 and 2 Images and Machine Learning Algorithms (Case Study: Sarpol-e Zahab Earthquake)
Niloofar Alizadeh - Behnam Asghari Beirami - Mehdi Mokhtarzade
R2-BAC: A Novel Blockchain and IoT-Based Access Control Model for Supply Chain Management
Sadegh Sohani - Farnaz Kamranfar - Haleh Amintoosi - Mohammad Allahbakhsh
An influence maximization algorithm based on community detection using topological features
Zahra Aghaee - Afsaneh Fatemi
A Novel Density-Based KNN in Pattern Recognition
Sajad Haghzad Klidbary - Abazar Arabameri
A Comprehensive Dataset of Real-scene Images for Text Detection and Recognition in Persian
Iman Souzanchi - Ramin Rahimi - Mohammad Ali Majidi Anvari - Atefeh Baniasadi - Ashkan Sadeghi - Mohammad Reza Mohammadi
Optimizing the controller placement problem in SDN with uncertain parameters with robust optimization
Mohammad Kazemi - AhmadReza Montazerolghaem
A Genetic-based Fusion Approach of Persian and Universal Phonetic results for Spoken Language Identification
Ashkan Moradi - Yasser Shekofteh - Saeed Zarei
Using Deep Learning for Classification of Lung Cancer on CT Images in Ardabil Province
Mohammad Ali Javadzadeh Barzaki - Jafar Abdollahi - Mohammad Negaresh - Maryam Salimi - Hadi Zolfeghari - Mohsen Mohammadi - Asma Salmani - Rona Jannati - Firouz Amani
more
Samin Hamayesh - Version 42.2.1