0% Complete
Home
/
12th International Conference on Computer and Knowledge Engineering
Cross-project Defect Prediction with An Enhanced Transfer Boosting Algorithm
Authors :
Nazgol Nikravesh
1
Mohammad Reza Keyvanpour
2
1- Data Mining Laboratory, Department of Computer Engineering, Faculty of Engineering, , Alzahra University, Tehran, Iran
2- Department of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran
Keywords :
class imbalance،software defect prediction،cross-project defect prediction،transfer learning،training data selection
Abstract :
A growing number of software projects makes it increasingly crucial to predict software defects. If sufficient historical data is available, within-project defect prediction models can be effective. During the early stages of software development, however, insufficient data exists to train an effective predictor. Cross-project defect prediction (CPDP) uses information from previous mature projects (source data) to predict whether new software modules (target data) will be defective. CPDP models must take into account the fact that data distributions between target and source projects are different. These models often reduce distribution differences by either selecting training data or using transfer learning methods. Using transfer learning effectively reduces distribution differences in recent CPDP models. Yet none of them have taken into account the possibility that negative transfer may occur as a result of imbalanced nature of defect data. In this paper, a four-step model is proposed, of which three steps are dedicated to the preparation of training data and their initial weights for using in the fourth step, which involves an enhanced version of the transfer boosting algorithm. In this algorithm imbalance nature of data is considered and the weighting of the source data is updated to enhance the prediction performance. Therefore, aside from reducing distribution differences between source and target data, the model also addresses issues related to defect data class imbalance. As compared to four state-of-the-art CPDP models, this model provided consistent and accurate predictions for fifteen projects from PROMISE, AEEEM, and SOFTLAB. Our proposed model provided the best average results for both AUC and F-measure and in some datasets, the improvements were more than 5%.
Papers List
List of archived papers
Zone-Based Federated Learning in Indoor Positioning
Omid Tasbaz - Vahideh Moghtadaiee - Bahar Farahani
Computational Microscopy Based on Fourier Ptychography using Embedded Architecture
Rezvan Mir - Abedin Vahedian
AI-Driven Relocation Tracking in Dynamic Kitchen Environments
Arash Nasr Esfahani - Hamed Hosseini - Mehdi Tale Masouleh - Ahmad Kalhor - Hedieh Sajedi
Weakly Supervised Learning in a Group of Learners with Communication
Ali Ganjbakhsh - Ahad Harati
Semantic Segmentation Using Region Proposals and Weakly-Supervised Learning
Maryam Taghizadeh - Abdolah Chalechale
A Graph-based Feature Selection using Class-Feature Association Map (CFAM)
Motahare Akhavan - Seyed Mohammad Hossein Hasheminejad
Enhancing Cloud Security with Federated CNN-LSTM: A Novel Approach to Intrusion Detection
Reyhaneh Ilaghi - Raheleh Ilaghi - Fereshteh Rahmani - Seyyed hamid Ghafoori
Android Malware Detection using Supervised Deep Graph Representation Learning
Fatemeh Deldar - Mahdi Abadi - Mohammad Ebrahimifard
R2-BAC: A Novel Blockchain and IoT-Based Access Control Model for Supply Chain Management
Sadegh Sohani - Farnaz Kamranfar - Haleh Amintoosi - Mohammad Allahbakhsh
Adversarial Robustness Evaluation with Separation Index
Bahareh Kaviani Baghbaderani - Afsaneh Hasanebrahimi - Ahmad Kalhor - Reshad Hosseini
more
Samin Hamayesh - Version 42.2.1