0% Complete
Home
/
14th International Conference on Computer and Knowledge Engineering
A Comprehensive Dataset of Real-scene Images for Text Detection and Recognition in Persian
Authors :
Iman Souzanchi
1
Ramin Rahimi
2
Mohammad Ali Majidi Anvari
3
Atefeh Baniasadi
4
Ashkan Sadeghi
5
Mohammad Reza Mohammadi
6
1- PART AI Research Center
2- PART AI Research Center
3- PART AI Research Center
4- PART AI Research Center
5- PART AI Research Center
6- School of Computer Engineering, Iran University of Science and Technology
Keywords :
Persian scene text dataset،Scene text recognition،Deep learning
Abstract :
Extracting text from scene images is a widely utilized field owing to the abundance of information available in scene images and their potential utilization in computer vision applications such as self-driving cars, text translation, information extraction from invoices, shopfronts, license plate retrieval, etc. Nonetheless, this field presents challenges because of the varying fonts, styles, sizes, and other characteristics of the text. Despite the existence of numerous studies on scene text recognition for languages such as English that employ deep learning models, a major barrier to implementing these models in Persian is the lack of an appropriate and sufficient dataset both in terms of quantity and quality. This paper aims to introduce a comprehensive collection of Persian scene images obtained from diverse sources, including newspapers, magazines, books, business cards, road signs, advertising billboards, shopfronts, invoices, and scanned documents. This dataset comprises over 250k of annotated text lines from 5000 images, including various lengths, fonts, and sizes that have been prepared under different conditions, including varying brightness and viewing angles. Additionally, more than 2,500,000 images of meaningful sentences have been synthesized since the annotation of real data is so expensive. In order to assess the efficacy of our dataset, a scene text recognition model was trained from existing models, and a word-accuracy of 83.9% was achieved on challenging test images.
Papers List
List of archived papers
EfficientNetB0’s Hybrid Approach for Brain Tumor Classification from MRI Images Using Deep Learning and Bagging Trees
Yeganeh Modaresnia - Farhad Abedinzadeh Torghabeh - Seyyed Abed Hosseini
A Chaotic Crow Search Algorithm for Overlapping Clustering
Mostafa Sabzekar - Seyed Vahid Mousavainejad
Adaptive Channel Estimation for MIMO-OFDM Systems in Impulsive Noise Environments
Mojtaba Hajiabadi
Delay Optimization of a Federated Learning-based UAV-aided IoT network
Hossein Mohammadi Firouzjaei - Javad Zeraatkar Moghaddam - Mehrdad Ardebilipour
Leveraging Self-Supervised Models for Automatic Whispered Speech Recognition
Aref Farhadipour - Homa Asadi - Volker Dellwo
An Overview of Regression Methods in Early Prediction of Movie Ratings
Houmaan Chamani - Zhivar Sourati Hassanzadeh - Behnam Bahrak
Effect of Tissue Excitation in Breast Cancer Detection from Ultrasound RF Time Series: Phantom studies
Elaheh Norouzi Ghehi - Ali Fallah - Saeid Rashidi - Maryam Mehdizadeh Dastjerdi
A Comprehensive Dataset of Real-scene Images for Text Detection and Recognition in Persian
Iman Souzanchi - Ramin Rahimi - Mohammad Ali Majidi Anvari - Atefeh Baniasadi - Ashkan Sadeghi - Mohammad Reza Mohammadi
A Framework for Automated Cardiovascular Magnetic Resonance Image Quality Scoring based on EuroCMR Registry Criteria
Shahabedin Nabavi - Mohsen Ebrahimi Moghaddam - Ahmad Ali Abin - Alejandro Frangi
Improvement of Credit Scoring by LSTM Autoencoder Model
Milad Sattari Maleki - Seyedeh Niusha Motevallian - Faezehsadat Hosseini - Mohammad Sabokrou - Hamidreza Soltanalizadeh Maleki
more
Samin Hamayesh - Version 41.3.1