0% Complete
Home
/
14th International Conference on Computer and Knowledge Engineering
AvashoG2P: A multi-module G2P Converter for Persian
Authors :
Ali Moghadaszadeh
1
Fatemeh Pasban
2
Mohsen Mahmoudzadeh
3
Maryam Vatanparast
4
Amirmohammad Salehoof
5
1- Part AI Research Center
2- Part AI Research Center
3- Ferdowsi University of Mashhad
4- Part AI Research Center
5- Part AI Research Center
Keywords :
TTS،G2P
Abstract :
The conversion of graphemes to phonemes (G2P) is a fundamental task in text-to-speech (TTS) and automatic speech recognition (ASR) systems. Over the years, G2P systems have evolved from rule-based and statistical methods to advanced neural network-based approaches. Despite these advancements, G2P conversion for Persian remains challenging due to the complex relationship between spelling and pronunciation and the scarcity of high-quality datasets. This paper introduces the AvashoG2P, a multi-module novel solution for Persian G2P conversion. The AvashoG2P system leverages a sequence-to-sequence (seq2seq) model with a GRU-based recurrent unit and an attention mechanism. This model is trained on both diacritized and non-diacritized words, enhancing its understanding of phonemes and their relationships. The system achieves a Word Error Rate (WER) of 15\% and a Phoneme Error Rate (PER) of 5\%, demonstrating its effectiveness. One of the critical components of AvashoG2P is its homograph disambiguation module, which utilizes a single model for all homographs, addressing a significant challenge in Persian text processing. Our method leverages a classification approach for homograph disambiguation, which assigns a phoneme label to the entire input window. Our system achieves high accuracy while optimizing for latency and memory consumption. We achieve significant improvements in accuracy and F1 scores using transformer-based models and machine learning classifiers. Our results highlight the superior performance of the XLMRoberta model among transformer models, with an F1 Weighted score of 94.7, and the SVC model among machine learning classifiers, with an F1 Weighted score of 89.96. Additionally, we present the AvashoG2P-Benchmark, a comprehensive test dataset designed to facilitate future research and benchmarking in Persian G2P tasks (available at: https://huggingface.co/datasets/PartAI/AvashoG2P-Benchmark).
Papers List
List of archived papers
Blind image quality assessment based on Multi-resolution Local Structures
Seyed Majid Khorashadizadeh - Mehdi Sadeghi Bakhi - Fatemeh Seifishahpar - AliMohammad Latif
Efficient Prediction of Cardiovascular Disease via Extra Tree Feature Selection
Mina Abroodi - Mohammad Reza Keyvanpour - Ghazaleh Kakavand Teimoory
Efficient Sub-Carrier Relationship Extraction for Human Activity Recognition via EEGNet in Wireless Sensing
Siavash Zaravashan - Sadegh ArefiZadeh - Sajjad Torabi
Delay Optimization of a Federated Learning-based UAV-aided IoT network
Hossein Mohammadi Firouzjaei - Javad Zeraatkar Moghaddam - Mehrdad Ardebilipour
Joint mobility-aware offloading and UAV position optimization in Blockchain-enabled 5G
Zeinab Rabbani - Zeinab Movahedi
A Comprehensive Approach to SMS Spam Filtering Integrating Embedded and Statistical Features
Shaghayegh Hosseinpour - Mohammad Reza Keyvanpour
Disturbance Rejection in Quadruple-Tank System by Proposing New Method in Reinforcement Learning
Alireza Nezamzadeh - Mohammadreza Esmaeilidehkordi
Segmentation of Hard Exudates in Retinal Fundus Images Using BCDU-Net
Nafise Ameri - Nasser Shoeibi - Mojtaba Abrishami
Real-Time Vehicle Detection and Classification in UAV imagery Using Improved YOLOv5
Mohammad Hossein Hamzenejadi - Hadis Mohseni
Automated Person Identification from Hand Images\\using Hierarchical Vision Transformer Network
Zahra Ebrahimian - Seyed Ali Mirsharji - Ramin Toosi - Mohammad Ali Akhaee
more
Samin Hamayesh - Version 41.5.3