0% Complete
Home
/
12th International Conference on Computer and Knowledge Engineering
Attention Transfer in Self-Regulated Networks for Recognizing Human Actions from Still Images
Authors :
Masoumeh Chapariniya
1
Sara Vesali Barazande
2
Seyed Sajad Ashrafi
3
Shahriar B.Shokouhi
4
1- School of Electrical Engineering, Iran University of Science and Technology
2- School of Electrical Engineering, Iran University of Science and Technology
3- School of Electrical Engineering, Iran University of Science and Technology
4- School of Electrical Engineering, Iran University of Science and Technology
Keywords :
Attention transfer،human action recognition; self-regulated networks; transfer learning.،human action recognition،self-regulated networks،transfer learning
Abstract :
Human action recognition in still images (HAR) is a challenging computer vision task owing to problems such as lack of temporal information and large intra-class variations, cluttered backgrounds, and misleading objects which requires highly discriminative features. Transfer learning algorithms such as knowledge distillation and attention transfer techniques offer the necessary abilities in producing informative features by preserving prior knowledge while learning new representations. Because The ResNet and its variants have made significant advances in computer vision, most research to date focused on knowledge distillation and attention transfer in this architecture. Recently, self-regulated networks based on regulator module have been introduced that perform better than ResNet networks in various computer vision tasks. In this article, we propose the attention transfer framework in self-regulated networks for human action recognition in still images. We conduct extensive experiments on Stanford 40 and Pascal Voc 2012 Action datasets to investigate the performance of the proposed framework. The best setting of our method gains 93.17% (in terms of mAP) on Stanford40 dataset and 91.83% (in terms of mAP) on Pascal Voc 2012 Action datasets. Experiments demonstrate that attention transfer framework in self-regulated networks with extraction more representative and informative features through regulator module based on memory mechanism and without using any auxiliary data such as personal bounding box, objects bounding boxes, and human-object interactions has been able to significantly improve the action recognition in still images.
Papers List
List of archived papers
Information Theoretic Learning-based Deep Embedded Clustering (ITL-DEC)
Hoda Shad - Mona Zamiri - Tahereh Bahreini - Reza Monsefi - Ghoshe Abed Hodtani
Adaptive-A-GCRNN: Enhancing Real-time Multi-band Spectrum Prediction through Attention-based Spatial-Temporal Modeling
Seyed majid Hosseini - Seyedeh Mozhgan Rahmatinia - Seyed Amin Hosseini Seno - Hadi Sadoghi yazdi
Facial Emotion Recognition Under Mask Coverage Using a Data Augmentation Technique
Aref Farhadipour - Pouya Taghipour
Effect of Tissue Excitation in Breast Cancer Detection from Ultrasound RF Time Series: Phantom studies
Elaheh Norouzi Ghehi - Ali Fallah - Saeid Rashidi - Maryam Mehdizadeh Dastjerdi
Hybrid Vision Transformer for Detection of Dentigerous Cysts in Dental Radiography Images
Reza Tavasoli - Arya VarastehNezhad - Hamed Farbeh
Frame Classification in Video Capsule Endoscopy Using an Improved Capsule Network
Amirhossein Ghaemi - Habibollah Danyali - Alireza Ghaemi
Histopathology Image-Based Cancer Classification Utilizing Transfer Learning Approach
Amir Meydani - Alireza Meidani - Ali Ramezani - Maryam Shabani - Mohammad Mehdi Kazeminasab - Shahriar Shahablavasani
Density Estimation Helps Adversarial Robustness
Afsaneh Hasanebrahimi - Bahareh Kaviani Baghbaderani - Reshad Hosseini - Ahmad Kalhor
Classification of Audio Streaming in Network Traffic Based on Machine Learning Methods
Mohammad Nikbakht - Mehdi Teimouri
Blind image quality assessment based on Multi-resolution Local Structures
Seyed Majid Khorashadizadeh - Mehdi Sadeghi Bakhi - Fatemeh Seifishahpar - AliMohammad Latif
more
Samin Hamayesh - Version 41.7.6