0% Complete
Home
/
12th International Conference on Computer and Knowledge Engineering
Multi-Task Transformer for Stock Market Trend Prediction
Authors :
Seyed Morteza Mirjebreili
1
Ata Solouki
2
Hamidreza Soltanalizadeh
3
Mohammad Sabokrou
4
1- Part AI Research Center
2- TELIN-IPI, Ghent University, Ghent, Belgium
3- Part AI Research Center
4- Institute for Research in Fundamental Sciences, Tehran, Iran
Keywords :
Stock Market،Trend Prediction،Deep Learning،Transformer،Multi-Task
Abstract :
This paper presents a novel stock market prediction method by taking transformers' advantages in analyzing the sequential data. The previous techniques usually tend to learn/understand the pattern of the market by analyzing the historical market data, while those patterns are very complex and implicit. To learn these patterns effectively, we cope with this challenge by leveraging deep neural models, i.e., transformers. We employ transformers to predict the stock trend. Since this kind of deep learning model needs a massive amount of data to be trained, the data paneling approach is hired to extend the dataset. Also, the multi-task technique is utilized to reduce the optimization searching space, which causing to speeding up the coverage and finding relatively optimal parameters and consequently improved accuracy. Note that the method of labeling the trend which is used in this paper is financially meaningful and more practical. We have evaluated the performance of our proposed method on the real-world stock market, specifically the Iran stock market. The results confirm the effectiveness of our proposed model.
Papers List
List of archived papers
Forecasting El Niño Six Months in Advance Utilizing Augmented Convolutional Neural Network
Mohammad Naisipour - Iraj Saeedpanah - Arash Adib - Mohammad Hossein Neisi Pour
Joint ADC-less Analog Demodulator and Decoder for Extended Binary (8, 4, 4) Hamming Channel Code
Mir Mahdi Safari - Jafar Pourrostam - Behzad Mozaffari Tazehkand
Improving the classification of high dimensional class-imbalanced data using the Chaos particle swarm optimization with Levy Flight
Mohammad Ali Zarif - Javad Hamidzadeh
Delay Optimization of a Federated Learning-based UAV-aided IoT network
Hossein Mohammadi Firouzjaei - Javad Zeraatkar Moghaddam - Mehrdad Ardebilipour
Prediction of West Texas Intermediate Crude-oil Price Using Hybrid Attention-based Deep Neural Networks: A Comparative Study
Alireza Jahandoost - Mahboobeh Houshmand - Seyyed Abed Hosseini
Leveraging a structure-based and learning-based predictor using various feature groups in bioinformatics (case study: protein-peptide region residue-level interaction)
Shima Shafiee - Abdolhossein Fathi
Android Malware Detection using Supervised Deep Graph Representation Learning
Fatemeh Deldar - Mahdi Abadi - Mohammad Ebrahimifard
Farsi Optical Character Recognition Using a Transformer-based Model
Fatemeh Asadi Zeydabadi - Elham Shabaninia - Hossein Nezamabadi-pour - Melika Shojaee
ROCT-Net: A new ensemble deep convolutional model with improved spatial resolution learning for detecting common diseases from retinal OCT images
Mohammad Rahimzadeh - Mahmoud Reza Mohammadi
Leveraging the Power of Object Detection Models in Identifying Litter for a Significant Reduction in Environmental Pollution
Lim Zhen Xian - Ervin Gubin Moung - Jason Teo Tze Wi - Nordin Saad - Farashazillah Yahya - Tiong Lin Rui - Ali Farzamnia
more
Samin Hamayesh - Version 42.2.1