0% Complete
Home
/
13th International Conference on Computer and Knowledge Engineering
Histopathology Image-Based Cancer Classification Utilizing Transfer Learning Approach
Authors :
Amir Meydani
1
Alireza Meidani
2
Ali Ramezani
3
Maryam Shabani
4
Mohammad Mehdi Kazeminasab
5
Shahriar Shahablavasani
6
1- Department of Electrical, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
2- School of Electrical and Computer Engineering University of Tehran
3- Department of Electrical, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
4- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
5- School of Electrical and Computer Engineering University of Tehran Tehran, Iran
6- Department of Electrical, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
Keywords :
Transfer Learning (TL)،Histopathology Images (HIs)،DenseNet121،Accuracy Detection،Deep Learning (DL)،Machine Learning (ML)،Convolutional Neural Network (CNN)
Abstract :
The primary objective of medicine and technology is to provide services capable of identifying and treating patients based on their particular conditions. The accuracy of disease diagnosis is of paramount importance to this endeavor. Cancer is a major cause of death on a global scale, with prognosis, prevention, and prompt intervention offering the possibility of complete patient remission. In this Python-based experiment, we investigate the viability of transfer learning for lymph node diagnosis in histopathology images, which are used to fine-tune a DenseNet121-based pre-trained model. The results indicate that fine-tuning the DenseNet121 model is more effective than training the model from start. Due to variations in the network's initial weight distribution, the network's average accuracy is 96%. Following the implementation and completion of ten training epochs, the average overall accuracy reaches a maximum of 98%, with less than 10% error accuracy.
Papers List
List of archived papers
BERT transformers Multitask learning Sarcasm and Sentiment classification (BMSS)
Fatemeh Molavi - Jamshid Bagherzadeh Mohasefi
Extracting Major Topics of COVID-19 Related Tweets
Faezeh Azizi - Hamed Vahdat-Nejad - Hamideh Hajiabadi - Mohammad Hossein Khosravi
Weakly Supervised Convolutional Neural Network for Automatic Gleason Grading of Prostate Cancer
Maryam Kamareh - Mohammad Sadegh Helfroush - Kamran Kazemi
CSI-Based Human Activity Recognition using Convolutional Neural Networks
Parisa Fard Moshiri - Mohammad Nabati - Reza Shahbazian - Seyed Ali Ghorashi
Age Estimation Based on Facial Images Using Hybrid Features and Particle Swarm Optimization
NILOUFAR MEHRABI - SAYED PEDRAM HAERI BOROUJENI
Improving ADHD Detection with Cost-Sensitive LightGBM
Behnam Yousefimehr - Mehdi Ghatee - Ali Heydari
I-ACS: An Improved Ant Colony System to Solve the Time-Dependent Orienteering Problem
Zahra Bakhshandeh - Morteza Keshtkaran
Optimizing Question-Answering Framework Through Integration of Text Summarization Model and Third-Generation Generative Pre-Trained Transformer
Ervin Gubin Moung - Toh Sin Tong - Maisarah Mohd Sufian - Valentino Liaw - Ali Farzamnia - Farashazillah Yahya
Impossible differential and zero-correlatin linear cryptanalysis of Marx, Marx2, Chaskey andSpeck32
Mahshid Saberi - Nasour Bagheri - Sadegh Sadeghi
Mitochondrial Segmentation in Microscopy Images Using UNet-VGG19
Zerek Sediq Hossein - Rojiar Pir Mohammadiani - Saadat Izadi
more
Samin Hamayesh - Version 42.4.1