0% Complete
Home
/
14th International Conference on Computer and Knowledge Engineering
Camouflage Object Segmentation with Attention-Guided Pix2Pix and Boundary Awareness
Authors :
Erfan Akbarnezhad Sany
1
Fatemeh Naserizadeh
2
Parsa Sinichi
3
Seyyed Abed Hosseini
4
1- Faculty of Computer Engineering, Quchan University of Technology, Quchan, Iran.
2- Faculty of Electrical & Computer Engineering, Malek Ashtar University of Technology
3- Faculty of Computer Engineering, Quchan University of Technology, Quchan, Iran.
4- Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
Keywords :
Camouflage،Object segmentation،Pix2Pix،Aware –boundary
Abstract :
Segmentation of camouflaged objects presents a significant challenge in computer vision due to their inherent blending with the background environment. This paper proposes an innovative method for precise camouflage segmentation using an advanced Pix2Pix architecture. The proposed method leverages the VGG16 network as a backbone for extracting robust features. Subsequently, convolutional block attention modules are integrated to refine these features by focusing attention on spatial and channel dimensions. The generator's decoding pathway employs upsampling stages and skips connections to reconstruct high-resolution segmentation maps effectively. Simultaneously, a discriminator network differentiates between ground truth segmentation maps and the generated ones. To optimize the model's performance, a combination of adversarial, L1, and Soft Dice losses was used during training. Here, the Dice Score loss function was employed twice. Firstly, it was used to quantify the disparity between the ground truth mask and the mask predicted by the generator. Secondly, it was applied to assess the difference between the boundary of the ground truth mask and the boundary of the predicted region extracted by morphological techniques. Comprehensive evaluations of the CAMO dataset demonstrate the effectiveness of the proposed method. This method achieves a pixel accuracy of 85.4054%, intersection over union of 43.9517, F-measure of 58.5606, and mean absolute error of 0.1307. These results highlight advancements in developing robust computer vision systems capable of identifying and understanding camouflage strategies in real-world scenarios.
Papers List
List of archived papers
YOLOatt-Med: YOLO-Based Attention Mechanism for Medical Image Classification
Fatemeh Naserizadeh - Erfan Akbarnezhad Sany - Parsa Sinichi - Seyyed Abed Hosseini
Sports News Summarization Using Ensebmle Learning
Moein Sartakhti.salimi@gmail.com - Mohammad Javad Maleki Kahaki - Ahmad Yoosofan - Seyyed Vahid Moravvej
Leveraging the Power of Object Detection Models in Identifying Litter for a Significant Reduction in Environmental Pollution
Lim Zhen Xian - Ervin Gubin Moung - Jason Teo Tze Wi - Nordin Saad - Farashazillah Yahya - Tiong Lin Rui - Ali Farzamnia
A Formalism for Specifying Capability-based Task Allocation in MAS
Samaneh HoseinDoost - Bahman Zamani - Afsaneh Fatemi
Intelligent Interpretation of Frequency Response Signatures to Diagnose Radial Deformation in Transformer Windings Using Artificial Neural Network
Reza Behkam - Hossein Karami - Mehdi Salay Naderi - Gevork B. Gharehpetian
Distinguishing Abstracts of Human-Written and ChatGPT-Generated Papers in the Field of Computer Science
Mohsen Arzani - Hamed Vahdat-Nejad - Matin Hossein-Pour
Identifying novel disease genes based on protein complexes and biological features
Mahshad Hashemi - Eghbal Mansoori
Cloud Service Composition Using Genetic Algorithm and Particle Swarm Optimization
Javad Dogani - Farshad Khunjush
An Interactive Approach for Query-based Multi-Document Scientific Text Summarization
Mohammadsadra Nejati - Azadeh Mohebi - Abbas Ahmadi
Distilled BERT Model In Natural Language Processing
Yazdan Zandiye Vakili - Avisa Fallah - Hedieh Sajedi
more
Samin Hamayesh - Version 42.4.1