0% Complete
Home
/
14th International Conference on Computer and Knowledge Engineering
Camouflage Object Segmentation with Attention-Guided Pix2Pix and Boundary Awareness
Authors :
Erfan Akbarnezhad Sany
1
Fatemeh Naserizadeh
2
Parsa Sinichi
3
Seyyed Abed Hosseini
4
1- Faculty of Computer Engineering, Quchan University of Technology, Quchan, Iran.
2- Faculty of Electrical & Computer Engineering, Malek Ashtar University of Technology
3- Faculty of Computer Engineering, Quchan University of Technology, Quchan, Iran.
4- Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
Keywords :
Camouflage،Object segmentation،Pix2Pix،Aware –boundary
Abstract :
Segmentation of camouflaged objects presents a significant challenge in computer vision due to their inherent blending with the background environment. This paper proposes an innovative method for precise camouflage segmentation using an advanced Pix2Pix architecture. The proposed method leverages the VGG16 network as a backbone for extracting robust features. Subsequently, convolutional block attention modules are integrated to refine these features by focusing attention on spatial and channel dimensions. The generator's decoding pathway employs upsampling stages and skips connections to reconstruct high-resolution segmentation maps effectively. Simultaneously, a discriminator network differentiates between ground truth segmentation maps and the generated ones. To optimize the model's performance, a combination of adversarial, L1, and Soft Dice losses was used during training. Here, the Dice Score loss function was employed twice. Firstly, it was used to quantify the disparity between the ground truth mask and the mask predicted by the generator. Secondly, it was applied to assess the difference between the boundary of the ground truth mask and the boundary of the predicted region extracted by morphological techniques. Comprehensive evaluations of the CAMO dataset demonstrate the effectiveness of the proposed method. This method achieves a pixel accuracy of 85.4054%, intersection over union of 43.9517, F-measure of 58.5606, and mean absolute error of 0.1307. These results highlight advancements in developing robust computer vision systems capable of identifying and understanding camouflage strategies in real-world scenarios.
Papers List
List of archived papers
MultiPath ViT OCR: A Lightweight Visual Transformer-based License Plate Optical Character Recognition
Alireza Azadbakht - Saeed Reza Kheradpisheh - Hadi Farahani
A Systematic Embedded Software Design Flow for Robotic Applications
Navid Mahdian - Seyed-Hosein Attarzadeh-Niaki - Armin Salimi-Badr
An Automated Visual Defect Segmentation for Flat Steel Surface Using Deep Neural Networks
Dorna Nourbakhsh Sabet - Mohammad Reza Zarifi - Javad Khoramdel - Yasamin Borhani - Esmaeil Najafi
Cluster Sampling: A Cluster-Driven Sampling Strategy for Deep Metric Learning
Hamideh Rafiee - Ahmad Ali Abin - Seyed Soroush Majd
Enhancing Cloud Security with Federated CNN-LSTM: A Novel Approach to Intrusion Detection
Reyhaneh Ilaghi - Raheleh Ilaghi - Fereshteh Rahmani - Seyyed hamid Ghafoori
FAHP-OF: A New Method for Load Balancing in RPL-based Internet of Things (IoT)
Mohammad Koosha - Behnam Farzaneh - Emad Alizadeh - Shahin Farzaneh
Automated software design using Machine Learning With Natural Language Processing
Fahimeh Khedmatkon - Seyed Mohammad Hossein Hasheminejad - Jaleh Shoshtarian Malak
Farsi Text in Scene: A new dataset
Ali Salmasi - Ehsanollah Kabir
DevRanker: An Effective Approach to Rank Developers for Bug Report Assignment
Mohammad Reza Kardoost - Mohammad Reza Moosavi - Reza Akbari
Supervised Contrastive Learning for Short Text Classification in Natural Language Processing
Mitra Esmaeili - Hamed Vahdat nejad
more
Samin Hamayesh - Version 42.2.1