0% Complete
Home
/
11th International Conference on Computer and Knowledge Engineering
PowerLinear Activation Functions with application to the first layer of CNNs
Authors :
Kamyar Nasiri
1
Kamaledin Ghiasi-Shirazi
2
1- Computer Engineering Dept. Ferdowsi University of Mashhad Mashhad, Iran
2- Computer Engineering Dept. Ferdowsi University of Mashhad Mashhad, Iran
Keywords :
PowerLinear activation function, Activation function, Kernel methods, Generalized convolution operators, CNNs
Abstract :
Convolutional neural networks (CNNs) have become the state-of-the-art tool for dealing with unsolved problems in computer vision and image processing. Since the convolution operator is a linear operator, several generalizations have been proposed to improve the performance of CNNs. One way to increase the capability of the convolution operator is by applying activation functions on the inner product operator. In this paper, we will introduce PowerLinear activation functions, which are based on the polynomial kernel generalization of the convolution operator. EvenPowLin functions are the main branch of the PowerLinear activation functions. This class of activation functions is saturated neither in the positive input region nor in the negative one. Also, the negative inputs are activated with the same magnitude as the positive inputs. These features made the EvenPowLin activation functions able to be utilized in the first layer of CNN architectures and learn complex features of input images. Additionally, EvenPowLin activation functions are used in CNN models to classify the inversion of grayscale images as accurately as the original grayscale images, which is significantly better than commonly used activation functions.
Papers List
List of archived papers
Practical Implementation of Real-Time Waste Detection and Recycling based on Deep Learning for Delta Parallel Robot
Hasan Jalali - Shaya Garjani - Ahmad Kalhor - Mehdi Tale Masouleh - Parisa Yousefi
Improved TrustChain for Lightweight Devices
Seyed Salar Ghazi - Haleh Amintoosi
An Efficient Approach for Breast Abnormality Detection through High-Level Features of Thermography Images
Farhad Abedinzadeh Torghabeh - Yeganeh Modaresnia - Seyyed Abed Hosseini
EfficientNetB0’s Hybrid Approach for Brain Tumor Classification from MRI Images Using Deep Learning and Bagging Trees
Yeganeh Modaresnia - Farhad Abedinzadeh Torghabeh - Seyyed Abed Hosseini
GroupRec: Group Recommendation by Numerical Characteristics of Groups in Telegram
Davod Karimpour - Mohammad Ali Zare Chahooki - Ali Hashemi
Improvement of CluStream Algorithm Using Sliding Window for the Clustering of Data Streams
Sahar Ahsani - Morteza Yousef Sanati - Muharram Mansoorizadeh
XAI for Transparent Autonomous Vehicles: A New Approach to Understanding Decision-Making in Self-driving Cars
Maryam Sadat Hosseini Azad - Amir Abbas Hamidi Imani - Shahriar Baradaran Shokouhi
Blind image quality assessment based on Multi-resolution Local Structures
Seyed Majid Khorashadizadeh - Mehdi Sadeghi Bakhi - Fatemeh Seifishahpar - AliMohammad Latif
Joint mobility-aware offloading and UAV position optimization in Blockchain-enabled 5G
Zeinab Rabbani - Zeinab Movahedi
Real-Time Vehicle Detection and Classification in UAV imagery Using Improved YOLOv5
Mohammad Hossein Hamzenejadi - Hadis Mohseni
more
Samin Hamayesh - Version 41.7.6