0% Complete
Home
/
13th International Conference on Computer and Knowledge Engineering
A Framework for Automated Cardiovascular Magnetic Resonance Image Quality Scoring based on EuroCMR Registry Criteria
Authors :
Shahabedin Nabavi
1
Mohsen Ebrahimi Moghaddam
2
Ahmad Ali Abin
3
Alejandro Frangi
4
1- Faculty of Computer Science and Engineering, Shahid Beheshti University
2- Faculty of Computer Science and Engineering, Shahid Beheshti University
3- Faculty of Computer Science and Engineering, Shahid Beheshti University
4- Division of Informatics, Imaging and Data Sciences, Schools of Computer Science and Health Sciences, The University of Manchester Manchester, U.K.
Keywords :
Artefact،Cardiovascular magnetic resonance imaging،Deep learning،EuroCMR registry،Image quality assessment
Abstract :
Cardiovascular magnetic resonance (CMR) imaging is a radiation-free modality widely used for functional and structural evaluation of the cardiovascular system. Achieving an accurate diagnosis requires having good-quality images. Subjective CMR image quality assessment is a tedious, time-consuming and costly process. This paper presents an automated scoring framework for CMR image quality assessment that uses deep learning models to evaluate left ventricular coverage and CMR imaging artefacts. The quality scoring in the proposed framework is an attempt to automate some of the subjective quality control criteria of the EuroCMR registry for the short-axis cine steady-state free precession (SSFP) CMR images. The scores given by a radiologist and a cardiologist with experience in CMR imaging for the images of 50 subjects from the UK Biobank were used to validate the proposed framework. The Pearson correlation coefficient (PCC) and the Spearman rank-order correlation coefficient (SRCC) calculated for the experts' quality scores versus ones obtained from the proposed framework are 0.908 and 0.806 on average. The results show that the quality scoring by the proposed framework is highly correlated with the experts' opinions. The proposed framework can be used for post-imaging quality assessment of short-axis cine SSFP CMR images and quality control of large population studies such as the UK Biobank.
Papers List
List of archived papers
Predicting cascading failure with machine learning methods in the interdependent networks
Mohamad Hossein Maghsoodi - Mohamad Khansari
A Smart Electrochemical Biosensor for Arsenic Detection in Water
Keyvan Asefpour Vakilian
Prediction of West Texas Intermediate Crude-oil Price Using Hybrid Attention-based Deep Neural Networks: A Comparative Study
Alireza Jahandoost - Mahboobeh Houshmand - Seyyed Abed Hosseini
No-Reference Video Quality Assessment by Deep Feature Maps Relations
Amir Hossein Bakhtiari - Azadeh Mansouri
Brain Age Estimation with Twin Vision Transformer using Hippocampus Information Applicable to Alzheimer Dementia Diagnosis
Zahra Qodrati - Seyedeh Masoumeh Taji - Amirhossein Ghaemi - Habibollah Danyali - Kamran Kazemi - Alireza Ghaemi
Mitochondrial Segmentation in Microscopy Images Using UNet-VGG19
Zerek Sediq Hossein - Rojiar Pir Mohammadiani - Saadat Izadi
Fast and Accurate Motif Discovery in Protein Sequences Using Parallel Processing with OpenMP
Rahele Mohammadi - Mahmoud Naghibzadeh - Abdorreza Savadi
Optimizing Text-Based Protocol Clustering in Reverse Engineering with Auto-Encoders and Fine-Tuned Parameters
Shiva Mahmoudzadeh - Mohaddese Nemati - Mehdi Teimouri
Adversarial Robustness Evaluation with Separation Index
Bahareh Kaviani Baghbaderani - Afsaneh Hasanebrahimi - Ahmad Kalhor - Reshad Hosseini
MCRS-SAE : multi criteria recommender system based on sparse autoencoder
Amir reza Kalantarnezhad - Javad Hamidzadeh
more
Samin Hamayesh - Version 41.5.3