0% Complete
Home
/
13th International Conference on Computer and Knowledge Engineering
A Framework for Automated Cardiovascular Magnetic Resonance Image Quality Scoring based on EuroCMR Registry Criteria
Authors :
Shahabedin Nabavi
1
Mohsen Ebrahimi Moghaddam
2
Ahmad Ali Abin
3
Alejandro Frangi
4
1- Faculty of Computer Science and Engineering, Shahid Beheshti University
2- Faculty of Computer Science and Engineering, Shahid Beheshti University
3- Faculty of Computer Science and Engineering, Shahid Beheshti University
4- Division of Informatics, Imaging and Data Sciences, Schools of Computer Science and Health Sciences, The University of Manchester Manchester, U.K.
Keywords :
Artefact،Cardiovascular magnetic resonance imaging،Deep learning،EuroCMR registry،Image quality assessment
Abstract :
Cardiovascular magnetic resonance (CMR) imaging is a radiation-free modality widely used for functional and structural evaluation of the cardiovascular system. Achieving an accurate diagnosis requires having good-quality images. Subjective CMR image quality assessment is a tedious, time-consuming and costly process. This paper presents an automated scoring framework for CMR image quality assessment that uses deep learning models to evaluate left ventricular coverage and CMR imaging artefacts. The quality scoring in the proposed framework is an attempt to automate some of the subjective quality control criteria of the EuroCMR registry for the short-axis cine steady-state free precession (SSFP) CMR images. The scores given by a radiologist and a cardiologist with experience in CMR imaging for the images of 50 subjects from the UK Biobank were used to validate the proposed framework. The Pearson correlation coefficient (PCC) and the Spearman rank-order correlation coefficient (SRCC) calculated for the experts' quality scores versus ones obtained from the proposed framework are 0.908 and 0.806 on average. The results show that the quality scoring by the proposed framework is highly correlated with the experts' opinions. The proposed framework can be used for post-imaging quality assessment of short-axis cine SSFP CMR images and quality control of large population studies such as the UK Biobank.
Papers List
List of archived papers
Enhanced Autoencoder-based Clustering for Message Analysis in Binary Protocols
Mohaddese Nemati - Shiva Mahmoudzadeh - Mehdi Teimouri
Attention Transfer in Self-Regulated Networks for Recognizing Human Actions from Still Images
Masoumeh Chapariniya - Sara Vesali Barazande - Seyed Sajad Ashrafi - Shahriar B.Shokouhi
Cardiology Disease Diagnosis by Analyzing Histological Microscopic Images Using Deep Learning
Maria Salehpanah - Jafar Tanha - Zahra Jafari - SeyedEhsan Roshan - Sajad Rezaei
Real-Time Gender Recognition with a Deep Neural Network
Samad Azimi Abriz - Majid Meghdadi
Diagnosis of Depression Based on New Features Extractive from the Frequency Space of the EEG
Melika Changizi - Saeid Rashidi
Efficient Sub-Carrier Relationship Extraction for Human Activity Recognition via EEGNet in Wireless Sensing
Siavash Zaravashan - Sadegh ArefiZadeh - Sajjad Torabi
Optimization of quantum secret sharing communication using corresponding bits
Mahsa Khorrampanah - Mohammad Bolokian - Monireh Houshmand
City Intersection Clustering and Analysis Based on Traffic Time Series
Mohammad Aminazadeh - Fakhroddin Noorbehbahani
Adaptive Active Queue Management for Time Slot Channel Hopping in Industrial Internet of Things
Mehdi Zirak - Yasser Sedaghat - Mohammad Hossein Yaghmaee Moghaddam
An interactive user groups recommender system based on reinforcement learning
Hediyeh Naderi Allaf - Mohsen Kahani
more
Samin Hamayesh - Version 41.3.1