0% Complete
Home
/
13th International Conference on Computer and Knowledge Engineering
A Framework for Automated Cardiovascular Magnetic Resonance Image Quality Scoring based on EuroCMR Registry Criteria
Authors :
Shahabedin Nabavi
1
Mohsen Ebrahimi Moghaddam
2
Ahmad Ali Abin
3
Alejandro Frangi
4
1- Faculty of Computer Science and Engineering, Shahid Beheshti University
2- Faculty of Computer Science and Engineering, Shahid Beheshti University
3- Faculty of Computer Science and Engineering, Shahid Beheshti University
4- Division of Informatics, Imaging and Data Sciences, Schools of Computer Science and Health Sciences, The University of Manchester Manchester, U.K.
Keywords :
Artefact،Cardiovascular magnetic resonance imaging،Deep learning،EuroCMR registry،Image quality assessment
Abstract :
Cardiovascular magnetic resonance (CMR) imaging is a radiation-free modality widely used for functional and structural evaluation of the cardiovascular system. Achieving an accurate diagnosis requires having good-quality images. Subjective CMR image quality assessment is a tedious, time-consuming and costly process. This paper presents an automated scoring framework for CMR image quality assessment that uses deep learning models to evaluate left ventricular coverage and CMR imaging artefacts. The quality scoring in the proposed framework is an attempt to automate some of the subjective quality control criteria of the EuroCMR registry for the short-axis cine steady-state free precession (SSFP) CMR images. The scores given by a radiologist and a cardiologist with experience in CMR imaging for the images of 50 subjects from the UK Biobank were used to validate the proposed framework. The Pearson correlation coefficient (PCC) and the Spearman rank-order correlation coefficient (SRCC) calculated for the experts' quality scores versus ones obtained from the proposed framework are 0.908 and 0.806 on average. The results show that the quality scoring by the proposed framework is highly correlated with the experts' opinions. The proposed framework can be used for post-imaging quality assessment of short-axis cine SSFP CMR images and quality control of large population studies such as the UK Biobank.
Papers List
List of archived papers
HiCAP: Hierarchical Clustering-based Attention Pooling for Graph Representation Learning
Parsa Haddadian - Rooholah Abedian - Ali Moeini
Joint mobility-aware offloading and UAV position optimization in Blockchain-enabled 5G
Zeinab Rabbani - Zeinab Movahedi
Smart Home Connectivity: Identifying the Best IoT Application Layer Protocols
Hossein Shahinzadeh - Zohreh Azani - Sundus F. Al-Hameedawi - S. Mohammadali Zanjani - Saiedeh Mehrabani-Najafabadi - Mohammadreza Hemmati
FAHP-OF: A New Method for Load Balancing in RPL-based Internet of Things (IoT)
Mohammad Koosha - Behnam Farzaneh - Emad Alizadeh - Shahin Farzaneh
Predicting cascading failure with machine learning methods in the interdependent networks
Mohamad Hossein Maghsoodi - Mohamad Khansari
Extracting Major Topics of COVID-19 Related Tweets
Faezeh Azizi - Hamed Vahdat-Nejad - Hamideh Hajiabadi - Mohammad Hossein Khosravi
Lempel-Ziv-based Hyper-Heuristic Solution for Longest Common Subsequence Problem
Mahdi Nasrollahi - Reza Shami Tanha - Mohsen Hooshmand
A New Time Series Approach in Churn Prediction with Discriminatory Intervals
Hedieh Ahmadi - Seyed Mohammad Hossein Hasheminejad
Hybrid Flow-Rule Placement Method of Proactive and Reactive in SDNs
Mohammadreza Khoobbakht - Mohammadreza Noei - Mohammadreza Parvizimosaed
Disturbance Rejection in Quadruple-Tank System by Proposing New Method in Reinforcement Learning
Alireza Nezamzadeh - Mohammadreza Esmaeilidehkordi
more
Samin Hamayesh - Version 42.2.1