0% Complete
Home
/
13th International Conference on Computer and Knowledge Engineering
Capturing Local and Global Features in Medical Images by Using Ensemble CNN-Transformer
Authors :
Javad Mirzapour Kaleybar
1
Hooman Saadat
2
Hooman Khaloo
3
1- Department of Computer Engineering, University College of Nabi Akram, Tabriz, Iran
2- Department of Electrical Engineering, Qazvin Branch, Iran
3- School of Technology Sharif University, Tehran, Iran
Keywords :
Medical Image Analysis،Transformer،Convolutional Neural Network،Deep Learning
Abstract :
This research paper addresses the challenges associated with traffic sign detection in self-driving vehicles and driver assistance systems. The development of reliable and highly accurate algorithms is crucial for the widespread adoption of traffic sign recognition and detection (TSRD) in diverse real-life scenarios. However, this task is complicated by suboptimal traffic images affected by factors such as camera movement, adverse weather conditions, and inadequate lighting. This study specifically focuses on traffic sign detection methods and introduces the application of the Transformer model, particularly the Vision Transformer variants, to tackle this task. The Transformer's attention mechanism, originally designed for natural language processing, offers improved parallel efficiency. Vision Transformers have demonstrated success in various domains, including autonomous driving, object detection, healthcare, and defense-related applications. To enhance the efficiency of the Transformer model, the research proposes a novel strategy that integrates a locality inductive bias and a transformer module. This includes the introduction of the Efficient Convolution Block and the Local Transformer Block, which effectively capture short-term and long-term dependency information, thereby improving both detection speed and accuracy. Experimental evaluations demonstrate the significant advancements achieved by this approach, particularly when applied to the German Traffic Sign Detection dataset.
Papers List
List of archived papers
Impossible differential and zero-correlatin linear cryptanalysis of Marx, Marx2, Chaskey andSpeck32
Mahshid Saberi - Nasour Bagheri - Sadegh Sadeghi
BioBERT-based SNP-traits Associations Extraction from Biomedical Literature
Mohammad Dehghani - Behrouz Bokharaeian - Zahra Yazdanparast
Bipartite link prediction improvement using the effective utilization of edge betweenness centrality
Sadegh Sulaimany Sulaimany - Yasin Amini
DevRanker: An Effective Approach to Rank Developers for Bug Report Assignment
Mohammad Reza Kardoost - Mohammad Reza Moosavi - Reza Akbari
Paddy Plant Stress Identification Using Few-Shot Learning Framework
Ervin Gubin Moung - Pavindrah Naidu a/l Narayanasamy Naiidu - Maisarah Mohd Sufian - Valentino Liaw - Ali Farzamnia - Lorita Angeline
Classification of COVID-19 and Nodule in CT Images using Deep Convolutional Neural Network
Amirhossein Ghaemi - Seyyed Amir Mousavi mobarakeh - Habibollah Danyali - Kamran Kazemi
Real-Time Forecasting Using Mixed Frequency Time-Series Data
Armin Khayati - Mohammad Taheri - Koorush Ziarati
Predicting cascading failure with machine learning methods in the interdependent networks
Mohamad Hossein Maghsoodi - Mohamad Khansari
Adversarial Robustness Evaluation with Separation Index
Bahareh Kaviani Baghbaderani - Afsaneh Hasanebrahimi - Ahmad Kalhor - Reshad Hosseini
Sum Rate Analysis and Power Allocation in Massive MIMO Systems with Power Constraints
Abdolrasoul Sakhaei Gharagezlou - Mahdi Nangir
more
Samin Hamayesh - Version 41.7.6