0% Complete
Home
/
13th International Conference on Computer and Knowledge Engineering
Capturing Local and Global Features in Medical Images by Using Ensemble CNN-Transformer
Authors :
Javad Mirzapour Kaleybar
1
Hooman Saadat
2
Hooman Khaloo
3
1- Department of Computer Engineering, University College of Nabi Akram, Tabriz, Iran
2- Department of Electrical Engineering, Qazvin Branch, Iran
3- School of Technology Sharif University, Tehran, Iran
Keywords :
Medical Image Analysis،Transformer،Convolutional Neural Network،Deep Learning
Abstract :
This research paper addresses the challenges associated with traffic sign detection in self-driving vehicles and driver assistance systems. The development of reliable and highly accurate algorithms is crucial for the widespread adoption of traffic sign recognition and detection (TSRD) in diverse real-life scenarios. However, this task is complicated by suboptimal traffic images affected by factors such as camera movement, adverse weather conditions, and inadequate lighting. This study specifically focuses on traffic sign detection methods and introduces the application of the Transformer model, particularly the Vision Transformer variants, to tackle this task. The Transformer's attention mechanism, originally designed for natural language processing, offers improved parallel efficiency. Vision Transformers have demonstrated success in various domains, including autonomous driving, object detection, healthcare, and defense-related applications. To enhance the efficiency of the Transformer model, the research proposes a novel strategy that integrates a locality inductive bias and a transformer module. This includes the introduction of the Efficient Convolution Block and the Local Transformer Block, which effectively capture short-term and long-term dependency information, thereby improving both detection speed and accuracy. Experimental evaluations demonstrate the significant advancements achieved by this approach, particularly when applied to the German Traffic Sign Detection dataset.
Papers List
List of archived papers
A large input-space-margin approach for adversarial training
Reihaneh Nikouei - Mohammad Taheri
Reversible Data Insertion in Encryption Domain Based on Reduced Quad Difference Expansion
Alireza Ghaemi - Mohammad Zare Ehteshami - Amirhossein Ghaemi
BERT transformers Multitask learning Sarcasm and Sentiment classification (BMSS)
Fatemeh Molavi - Jamshid Bagherzadeh Mohasefi
AVID: A VARIATIONAL INFERENCE DELIBERATION FOR META-LEARNING
Alireza Javaheri - Arsham Gholamzadeh Khoee - Saeed Reza Kheradpisheh - Hadi Farahani - Mohammad Ganjtabesh
Attention-Boosted Ensemble of Pre-trained Convolutional Neural Networks for Accurate Diabetic Retinopathy Detection
Benyamin Mirab Golkhatmi - Mohammad Hossein Moattar
Soccer Video Event Detection Using Metric Learning
Ali Karimi - Ramin Toosi - Mohammad Ali Akhaee
Automatic Generation of XACML Code using Model-Driven Approach
Athareh Fatemian - Bahman Zamani - Marzieh Masoumi - Mehran Kamranpour - Behrouz Tork Ladani - Shekoufeh Kolahdouz Rahimi
Efficient Prediction of Cardiovascular Disease via Extra Tree Feature Selection
Mina Abroodi - Mohammad Reza Keyvanpour - Ghazaleh Kakavand Teimoory
Persis: A Persian Font Recognition Pipeline Using Convolutional Neural Networks
Mehrdad Mohammadian - Neda Maleki - Tobias Olsson - Fredrik Ahlgren
XAI for Transparent Autonomous Vehicles: A New Approach to Understanding Decision-Making in Self-driving Cars
Maryam Sadat Hosseini Azad - Amir Abbas Hamidi Imani - Shahriar Baradaran Shokouhi
more
Samin Hamayesh - Version 42.2.1