0% Complete
Home
/
13th International Conference on Computer and Knowledge Engineering
Identification of Botnets and Nodes Attacking Smart Cities by Majority Voting Mechanism and Feature Selection
Authors :
Maliheh Araghchi
1
Nazbanoo Farzaneh
2
1- Imam Reza International University
2- Imam Reza International University
Keywords :
Internet of things network،Smart cities،Majority voting،Intrusion detection system
Abstract :
A network intrusion detection system can monitor network traffic, record it, and apply intrusion detection algorithms to detect network intrusions. An effective intrusion detection system must have the ability to learn and discover intrusion patterns, and for this reason, most intrusion detection systems are designed by machine learning and deep learning methods. In this article, an intrusion detection system in the fog layer of smart cities is presented with feature selection as a group and learning with majority voting to discover the important features of attacks and share them between fog nodes. Here, each fog node can detect the important characteristics of attacks and share it with other fog nodes. Each fog node can perform its own learning on the discovered important features to detect network intrusion. In the proposed method, each fog node recognizes the most important features of the network traffic by the feature selection mechanism as a group and by majority voting and uses these features to use the artificial neural network classifier. Simulation results show that the proposed method has accuracy, sensitivity, and precision of 98.89%, 98.68%, and 98.81%, respectively, in detecting network attacks. The proposed method is more accurate in detecting attacks than methods such as GTO, PSO, HHO, WOA, and JSO. Experiments showed that the proposed method has improved the accuracy index by 1.22%, 1.13%, and 0.77%, respectively, compared to the WOA, HHO, and JSO algorithms.
Papers List
List of archived papers
Zone-Based Federated Learning in Indoor Positioning
Omid Tasbaz - Vahideh Moghtadaiee - Bahar Farahani
Efficient Prediction of Cardiovascular Disease via Extra Tree Feature Selection
Mina Abroodi - Mohammad Reza Keyvanpour - Ghazaleh Kakavand Teimoory
Community-Based QoE Enhancement for User-Generated Content Live Streaming
Reza Saeedinia - S.Omid Fatemi - Daniele Lorenzi - Farzad Tashtarian - Christian Timmerer
TrackMine: Topic Tracking in Model Mining using Genetic Algorithm
Mohammad Sajad Kasaei - Mohammadreza Sharbaf - Afsaneh Fatemi - Bahman Zamani
An effective hybrid algorithm for locating splicing forgery image
Seyed Hesamoddin Hosseini - Amene Vatanparast - Amir Hossein Taherinia
Speech Emotion Recognition Using a Hierarchical Adaptive Weighted Multi-Layer Sparse Auto-Encoder Extreme Learning Machine with New Weighting and Spectral/SpectroTemporal Gabor Filter Bank Features
Fatemeh Daneshfar - Seyed Jahanshah Kabudian
Attention Transfer in Self-Regulated Networks for Recognizing Human Actions from Still Images
Masoumeh Chapariniya - Sara Vesali Barazande - Seyed Sajad Ashrafi - Shahriar B.Shokouhi
A Novel Approach for Image-Text Matching Cross-Modal Space Learning
Amirreza Ebrahimi - Mohammad Javad Parseh - Pejman Rasti
Novel Insights in Deep Learning for Predicting Climate Phenomena
Mohammad Naisipour - Saghar Ganji - Iraj Saeedpanah - Behnam Mehrakizadeh - Ahmad Reza Labibzadeh
BERT transformers Multitask learning Sarcasm and Sentiment classification (BMSS)
Fatemeh Molavi - Jamshid Bagherzadeh Mohasefi
more
Samin Hamayesh - Version 41.3.1