0% Complete
Home
/
13th International Conference on Computer and Knowledge Engineering
Identification of Botnets and Nodes Attacking Smart Cities by Majority Voting Mechanism and Feature Selection
Authors :
Maliheh Araghchi
1
Nazbanoo Farzaneh
2
1- Imam Reza International University
2- Imam Reza International University
Keywords :
Internet of things network،Smart cities،Majority voting،Intrusion detection system
Abstract :
A network intrusion detection system can monitor network traffic, record it, and apply intrusion detection algorithms to detect network intrusions. An effective intrusion detection system must have the ability to learn and discover intrusion patterns, and for this reason, most intrusion detection systems are designed by machine learning and deep learning methods. In this article, an intrusion detection system in the fog layer of smart cities is presented with feature selection as a group and learning with majority voting to discover the important features of attacks and share them between fog nodes. Here, each fog node can detect the important characteristics of attacks and share it with other fog nodes. Each fog node can perform its own learning on the discovered important features to detect network intrusion. In the proposed method, each fog node recognizes the most important features of the network traffic by the feature selection mechanism as a group and by majority voting and uses these features to use the artificial neural network classifier. Simulation results show that the proposed method has accuracy, sensitivity, and precision of 98.89%, 98.68%, and 98.81%, respectively, in detecting network attacks. The proposed method is more accurate in detecting attacks than methods such as GTO, PSO, HHO, WOA, and JSO. Experiments showed that the proposed method has improved the accuracy index by 1.22%, 1.13%, and 0.77%, respectively, compared to the WOA, HHO, and JSO algorithms.
Papers List
List of archived papers
Stock market prediction using multi-objective optimization
Mahshid Zolfaghari - Hamid Fadishei - Mohsen Tajgardan - Reza Khoshkangini
Trust Management Enhancement for the Internet of Things: a Smart Contract Approach
Amin Rouzbahani - Fattaneh Taghiyareh
Deep Learning Feature Extraction for COVID-19 Detection Algorithm using Computerized Tomography Scan
Maisarah Mohd Sufian - Ervin Gubin Moung - Chong Joon Hou - Ali Farzamnia
Financial Market Prediction Using Deep Neural Networks with Hardware Acceleration
Dara Rahmati - Mohammad Hadi Foroughi - Ali Bagherzadeh - Mehdi Foroughi - Saeid Gorgin
Automating Theory of Mind Assessment with a LLaMA-3-Powered Chatbot: Enhancing Faux Pas Detection in Autism
Avisa Fallah - Ali Keramati - Mohammad Ali Nazari - Fatemeh Sadat Mirfazeli
Reversible Data Insertion in Encryption Domain Based on Reduced Quad Difference Expansion
Alireza Ghaemi - Mohammad Zare Ehteshami - Amirhossein Ghaemi
Optimization Resource Allocation in NOMA-based Fog Computing with a Hybrid Algorithm
Zohreh Torki - S.Mojtaba Matinkhah
DFIG-WECS Renewable Integration to the Grid and Stability Improvement through Optimal Damping Controller Design
Theophilus Ebuka Odoh - Aliyu Sabo - Hossien Shahinzadeh - Noor Izzri Abdul Wahab - Farshad Ebrahimi
Investigation of topological characteristics of Iranian railway network: A network science approach
Sina Firuzbakht - Mohammad Khansari
Vaccine Distribution Modelling in Pandemics through Multi-Agent Systems: COVID-19 Case
Hossein Yarahmadi - Mohammad Ebrahim Shiri - Hamid Reza Navidi - Arash Sharifi - Moharram Challenger - Hassan Piriaei
more
Samin Hamayesh - Version 41.5.3