0% Complete
Home
/
13th International Conference on Computer and Knowledge Engineering
EfficientNetB0’s Hybrid Approach for Brain Tumor Classification from MRI Images Using Deep Learning and Bagging Trees
Authors :
Yeganeh Modaresnia
1
Farhad Abedinzadeh Torghabeh
2
Seyyed Abed Hosseini
3
1- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
2- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
3- Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran .
Keywords :
brain tumors،transfer learning،convolutional neural network،MRI،tumor classification
Abstract :
Brain tumors pose a significant threat to individuals due to their potential to alter DNA and disrupt normal brain function. Early and accurate detection is crucial for successful treatment. In this article, we propose a novel approach for brain tumor classification using a combination of transfer learning and machine learning techniques. The study utilizes two publicly available datasets of MRI images (Figshare and Kaggle) from patients diagnosed with Glioma, Meningioma, and Pituitary tumor. The first approach involves fine-tuning a state-of-the-art convolutional neural network (CNN), EfficientNetB0, for three-class tumor classification. The CNN achieves impressive results with an average accuracy of 97.71% and demonstrates high precision, sensitivity, specificity, and F-measure for all tumor types. In the second approach, high-level features extracted from EfficientNetB0 are fed into a bagging tree classifier. This hybrid approach outperforms the CNN approach, achieving an average accuracy of 99.64%. The bagging tree model shows superior precision, sensitivity, specificity, and F-measure for all tumor types, indicating its effectiveness in classifying tumor severity. The proposed method surpasses existing state-of-the-art models. Accurate and early detection of brain tumors can significantly improve patient prognosis and guide appropriate treatment strategies.
Papers List
List of archived papers
Multi Model CNN Based Gas Meter Characters Recognition
Sanaz Tarhib - Jafar Tanha - Soodabeh Imanzadeh - Sahar Hassanzadeh Mostafaei
Robustness Scan of Digital Circuits Using Convolutional Neural Networks
Mobin Vaziri - Mohammad Mehdi Rahimifar - Hadi Jahanirad
Evolutionary Approach to GAN Hyperparameter Tuning: Minimizing Discriminator and Generator Loss Functions
Sajad Haghzad Klidbary - Anahita Babaei - Ramin Ghorbani
Evaluating the Impact of Traveling on COVID-19 Prevalence and Predicting the New Confirmed Cases According to the Travel Rate Using Machine Learning: A Case Study in Iran
Anita Ghandehari - Soheil Shirvani - Hadi Moradi
A scalable blockchain-based educational network for data storage and assessment
Maryam Fattahi Vanani - Hamidreza Shayegh Borujeni - Ali Nourollah
A Graph-based Feature Selection using Class-Feature Association Map (CFAM)
Motahare Akhavan - Seyed Mohammad Hossein Hasheminejad
Delay Optimization of a Federated Learning-based UAV-aided IoT network
Hossein Mohammadi Firouzjaei - Javad Zeraatkar Moghaddam - Mehrdad Ardebilipour
An Efficient Planning Method for Autonomous Navigation of a Wheeled-Robot based on Deep Reinforcement Learning
Ali Salimi Sadr - Mahdi Shahbazi Khojasteh - Hamed Malek - Armin Salimi-Badr
An overview of Business Intelligence research in healthcare organizations using a topic modeling approach
Mohammad Mehraeen - Laya Mahmoudi - Mohammad Hossein Sharifi
SingAll: Scalable Control Flow Checking for Multi-Process Embedded Systems
Mehdi Amininasab - Ahmad Patooghy - Mahdi Fazeli
more
Samin Hamayesh - Version 41.5.3