0% Complete
Home
/
14th International Conference on Computer and Knowledge Engineering
Frame Classification in Video Capsule Endoscopy Using an Improved Capsule Network
Authors :
Amirhossein Ghaemi
1
Habibollah Danyali
2
Alireza Ghaemi
3
1- Department of Electrical Engineering Shiraz University of Technology Shiraz, Iran
2- Department of Electrical Engineering Shiraz University of Technology Shiraz, Iran
3- Department of Electrical Engineering Shiraz University of Technology Shiraz, Iran
Keywords :
Capsule network،Convolutional neural network،Classification،Lightweight network،Gastrointestinal diseases،Video capsule endoscopy،Kvasir-Capsule
Abstract :
The non-invasive technique of Video Capsule Endoscopy (VCE) enables a thorough examination of the human intestinal tract, generating numerous images from various segments of the gastrointestinal system. Since manual image analysis is labor-intensive and time-consuming, there is a high demand for automated diagnostic systems to identify digestive disorders from VCE frames. Most existing studies rely on Convolutional Neural Networks (CNNs). These approaches demonstrate limited efficacy in capturing spatial relationships between features and recognizing objects across various poses and variations within VCE images. Therefore, this paper proposes an improved capsule network to increase the preservation and comprehension of spatial connections between features, hence improving the recognition of patterns and objects that have been rotated, scaled, or otherwise transformed. The proposed network employs convolutional-capsule layers with a modified routing algorithm between capsules to encode and extract characteristics, resulting in part-whole relationships. Furthermore, the network applies vector length calculations to feature vectors obtained via the layers mentioned above to determine the classification of images as normal or abnormal. The proposed network attains state-of-the-art performance, with a notable accuracy of 96.78% on the public Kvasir-Capsule dataset, while requiring considerably fewer parameters than competing classification networks.
Papers List
List of archived papers
A 2D-CNN Architecture for Improving the Classification Accuracy of an Electronic Nose with Different Sensor Positions
Hannaneh Mahdavi - Reza Goldoust - Saeideh Rahbarpour
CSI-Based Human Activity Recognition using Convolutional Neural Networks
Parisa Fard Moshiri - Mohammad Nabati - Reza Shahbazian - Seyed Ali Ghorashi
Delay Optimization of a Federated Learning-based UAV-aided IoT network
Hossein Mohammadi Firouzjaei - Javad Zeraatkar Moghaddam - Mehrdad Ardebilipour
A Cost-Sensitive Genetic Algorithm for Customer Segmentation in Auto Insurances
Alireza Khajenoori - Mohammad Saniee Abadeh - Mohsen Mohammadzadeh
A Robust Network for Embedded Traffic Sign Recognation.
Omid Nejati Manzari - Shahriar Baradaran Shokouhi
I-ACS: An Improved Ant Colony System to Solve the Time-Dependent Orienteering Problem
Zahra Bakhshandeh - Morteza Keshtkaran
Cloud Service Composition Using Genetic Algorithm and Particle Swarm Optimization
Javad Dogani - Farshad Khunjush
Multi Model CNN Based Gas Meter Characters Recognition
Sanaz Tarhib - Jafar Tanha - Soodabeh Imanzadeh - Sahar Hassanzadeh Mostafaei
WBT-GAN:Wavelet based Generative Adversarial Network for Texture Synthesis
Sara Saberi moghadam - Reza Azmi - Maral Zarvani
Standardized ReACT Logits: An Effective Approach for Anomaly Segmentation in Self-driving Cars
Mahdi Farhadi - Seyede Mahya Hazavei - Shahriar Baradaran Shokouhi
more
Samin Hamayesh - Version 42.2.1