0% Complete
Home
/
14th International Conference on Computer and Knowledge Engineering
Enhancing Vehicle Make and Model Recognition with 3D Attention Modules
Authors :
Narges Semiromizadeh
1
Omid Nejati Manzari
2
Shahriar B. Shokouhi
3
Sattar Mirzakuchaki
4
1- School of Electrical Engineering, Iran University of Science and Technology
2- School of Electrical Engineering, Iran University of Science and Technology
3- School of Electrical Engineering, Iran University of Science and Technology
4- School of Electrical Engineering, Iran University of Science and Technology
Keywords :
Deep Learning،Vehicle recognition،Attention module
Abstract :
Vehicle make and model recognition (VMMR) is a crucial component of the Intelligent Transport System, garnering significant attention in recent years. VMMR has been widely utilized for detecting suspicious vehicles, monitoring urban traffic, and autonomous driving systems. The complexity of VMMR arises from the subtle visual distinctions among vehicle models and the wide variety of classes produced by manufacturers. Convolutional Neural Networks (CNNs), a prominent type of deep learning model, have been extensively employed in various computer vision tasks, including VMMR, yielding remarkable results. As VMMR is a fine-grained classification problem, it primarily faces inter-class similarity and intra-class variation challenges. In this study, we implement an attention module to address these challenges and enhance the model’s focus on critical areas containing distinguishing features. This module, which does not increase the parameters of the original model, generates three-dimensional (3-D) attention weights to refine the feature map. Our proposed model integrates the attention module into two different locations within the middle section of a convolutional model, where the feature maps from these sections offer sufficient information about the input frames without being overly detailed or overly coarse. The performance of our proposed model, along with state-of-the-art (SOTA) convolutional and transformer-based models, was evaluated using the Stanford Cars dataset. Our proposed model achieved the highest accuracy, 90.69%, among the compared models.
Papers List
List of archived papers
Overview of Electric Vehicles Charging Stations in Smart Grids
Mohammed Wadi - Wisam Elmasry - Mohammed Jouda - Hossein Shahinzadeh - Gevork B. Gharehpetian
A Semi-supervised Fake News Detection using Sentiment Encoding and LSTM with Self-Attention
Pouya Shaeri - Ali Katanforoush
Early detection of Parkinson’s disease using Convolutional Neural Networks on SPECT images
Reyhaneh Dehghan - Marjan Naderan - Seyyed Enayatallah Alavi
Bipartite link prediction improvement using the effective utilization of edge betweenness centrality
Sadegh Sulaimany Sulaimany - Yasin Amini
Parallel Local Feature Selection For High-dimensional Data
Zhaleh Manbari - Chiman Salavati - Fardin AkhlaghianTab - Barzan Saeedpoor - Himan Delbina - Mahmud Abdulla Mohammad
Soccer Video Event Detection Using Metric Learning
Ali Karimi - Ramin Toosi - Mohammad Ali Akhaee
Optimizing Foreign Exchange Trading Performance Through Reinforcement Machine Learning Framework
Ervin Gubin Moung - Hani Yasmin Binti Murnizam - Maisarah Mohd Sufian - Valentino Liaw - Ali Farzamnia - Lorita Angeline
MultiPath ViT OCR: A Lightweight Visual Transformer-based License Plate Optical Character Recognition
Alireza Azadbakht - Saeed Reza Kheradpisheh - Hadi Farahani
Real-Time Vehicle Detection and Classification in UAV imagery Using Improved YOLOv5
Mohammad Hossein Hamzenejadi - Hadis Mohseni
Fine-tuned Generative Adversarial Network-based Model for Medical Image Super-Resolution
Alireza Aghelan - Modjtaba Rouhani
more
Samin Hamayesh - Version 41.5.3