0% Complete
Home
/
14th International Conference on Computer and Knowledge Engineering
Enhancing Vehicle Make and Model Recognition with 3D Attention Modules
Authors :
Narges Semiromizadeh
1
Omid Nejati Manzari
2
Shahriar B. Shokouhi
3
Sattar Mirzakuchaki
4
1- School of Electrical Engineering, Iran University of Science and Technology
2- School of Electrical Engineering, Iran University of Science and Technology
3- School of Electrical Engineering, Iran University of Science and Technology
4- School of Electrical Engineering, Iran University of Science and Technology
Keywords :
Deep Learning،Vehicle recognition،Attention module
Abstract :
Vehicle make and model recognition (VMMR) is a crucial component of the Intelligent Transport System, garnering significant attention in recent years. VMMR has been widely utilized for detecting suspicious vehicles, monitoring urban traffic, and autonomous driving systems. The complexity of VMMR arises from the subtle visual distinctions among vehicle models and the wide variety of classes produced by manufacturers. Convolutional Neural Networks (CNNs), a prominent type of deep learning model, have been extensively employed in various computer vision tasks, including VMMR, yielding remarkable results. As VMMR is a fine-grained classification problem, it primarily faces inter-class similarity and intra-class variation challenges. In this study, we implement an attention module to address these challenges and enhance the model’s focus on critical areas containing distinguishing features. This module, which does not increase the parameters of the original model, generates three-dimensional (3-D) attention weights to refine the feature map. Our proposed model integrates the attention module into two different locations within the middle section of a convolutional model, where the feature maps from these sections offer sufficient information about the input frames without being overly detailed or overly coarse. The performance of our proposed model, along with state-of-the-art (SOTA) convolutional and transformer-based models, was evaluated using the Stanford Cars dataset. Our proposed model achieved the highest accuracy, 90.69%, among the compared models.
Papers List
List of archived papers
An Attention-Based Model for Clinical Time Series Prediction: Enhancing ICU Readmission Prediction
Hananeh Sadat Madinei - Mohammad Reza Keyvanpour - Seyed Vahab Shojaedini
Multi-Layer Collaborative Graph with BPR Similarity Embedding for Recommender System
Mostafa Ghorbani - Azadeh Mansouri
The Effect of Network Environment on Traffic Classification
Abolghasem Rezaei Khesal - Mehdi Teimouri
Multi-Task Transformer for Stock Market Trend Prediction
Seyed Morteza Mirjebreili - Ata Solouki - Hamidreza Soltanalizadeh - Mohammad Sabokrou
A Framework for Automated Cardiovascular Magnetic Resonance Image Quality Scoring based on EuroCMR Registry Criteria
Shahabedin Nabavi - Mohsen Ebrahimi Moghaddam - Ahmad Ali Abin - Alejandro Frangi
Optimizing Foreign Exchange Trading Performance Through Reinforcement Machine Learning Framework
Ervin Gubin Moung - Hani Yasmin Binti Murnizam - Maisarah Mohd Sufian - Valentino Liaw - Ali Farzamnia - Lorita Angeline
Attention-Boosted Ensemble of Pre-trained Convolutional Neural Networks for Accurate Diabetic Retinopathy Detection
Benyamin Mirab Golkhatmi - Mohammad Hossein Moattar
A Simple Low Cost Approach to Detect Hand Gesture Based on Software Event Camera Emulation
Ali Sabet Akbarzadeh - Abedin Vahedian
Lightweight Local Transformer for COVID-19 Detection Using Chest CT Scans
Hojat Asgarian Dehkordi - Hossein Kashiani - Amir Abbas Hamidi Imani - Shahriar Baradaran Shokouhi
PowerLinear Activation Functions with application to the first layer of CNNs
Kamyar Nasiri - Kamaledin Ghiasi-Shirazi
more
Samin Hamayesh - Version 42.2.1