0% Complete
Home
/
12th International Conference on Computer and Knowledge Engineering
Weakly Supervised Convolutional Neural Network for Automatic Gleason Grading of Prostate Cancer
Authors :
Maryam Kamareh
1
Mohammad Sadegh Helfroush
2
Kamran Kazemi
3
1- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
2- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
3- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
Keywords :
Histopathology،Prostate cancer،Gleason Grading،Deep Learning،Weakly Supervised،Convolutional Neural Network
Abstract :
Digital histopathology is based on the analysis of digitized biopsy slides. Prostate cancer is the second most common cancer among men. The grading of prostate cancer is based on the Gleason grading system. The process of analyzing histopathology images and manually determining the Gleason grades by expert pathologists is a time-consuming and expensive process. Therefore, development of a system based on machine learning can provide an accurate method for grading prostate cancer. But these systems are not easy to develop because they require significant amounts of pixel level annotated data. Since the pathologists' clinical reports often contain only slide-level labels, this type of data is rarely available. Therefore, the development of methods that can learn using only slide-level labels and do not require manual pixel level annotation would be a significant advance in this field. In this paper, we propose a weakly-supervised convolutional neural network for Gleason grading of prostate cancer tissue microarrays with Hematoxylin and Eosin staining, without using pixel level annotations. To choose a suitable classifier, we explored different pre-trained models as a feature extractor, namely ResNet-50, VGG-19 and MobileNet. We used class-wise data augmentation method to face the imbalance problem in our dataset. The best network architecture was ResNet-50 as backbone. In the test cohort, ResNet-50 as backbone with class-wise data augmentation achieved an accuracy of 80% for the Gleason grades.
Papers List
List of archived papers
Zone-Based Federated Learning in Indoor Positioning
Omid Tasbaz - Vahideh Moghtadaiee - Bahar Farahani
Automated Person Identification from Hand Images\\using Hierarchical Vision Transformer Network
Zahra Ebrahimian - Seyed Ali Mirsharji - Ramin Toosi - Mohammad Ali Akhaee
Real-Time Forecasting Using Mixed Frequency Time-Series Data
Armin Khayati - Mohammad Taheri - Koorush Ziarati
Spatial-channel attention-based stochastic neighboring embedding pooling and long short term memory for lung nodules classification
AHMED SAIHOOD - HOSSEIN KARSHENAS - AHMADREZA NAGHSH NILCHI
Non-Functional Requirement Extracting Methods for AI-based Systems: A Survey
Reza Damirchi - Amineh Amini
Innovative Customer Segmentation based on Multi-Step Sequential Deep Clustering in the Telecommunication Industry
Fatemeh Jalali Farahani - Shima Tabibian
A scalable blockchain-based educational network for data storage and assessment
Maryam Fattahi Vanani - Hamidreza Shayegh Borujeni - Ali Nourollah
Blind image quality assessment based on Multi-resolution Local Structures
Seyed Majid Khorashadizadeh - Mehdi Sadeghi Bakhi - Fatemeh Seifishahpar - AliMohammad Latif
SGFL: A Federated Learning Approach for Non-IID Data Using Semi-Supervised DCGAN
Alireza Rabiee - Abolfazl Ajdarloo - Mohsen Rahmani
FGM Copula based Analysis of Coverage Region for Wireless Three-User Multiple Access Channel with Correlated Channel Coefficients
Mona Sadat Mohsenzadeh - Ghosheh Abed Hodtani
more
Samin Hamayesh - Version 42.2.1