0% Complete
Home
/
12th International Conference on Computer and Knowledge Engineering
Weakly Supervised Convolutional Neural Network for Automatic Gleason Grading of Prostate Cancer
Authors :
Maryam Kamareh
1
Mohammad Sadegh Helfroush
2
Kamran Kazemi
3
1- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
2- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
3- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
Keywords :
Histopathology،Prostate cancer،Gleason Grading،Deep Learning،Weakly Supervised،Convolutional Neural Network
Abstract :
Digital histopathology is based on the analysis of digitized biopsy slides. Prostate cancer is the second most common cancer among men. The grading of prostate cancer is based on the Gleason grading system. The process of analyzing histopathology images and manually determining the Gleason grades by expert pathologists is a time-consuming and expensive process. Therefore, development of a system based on machine learning can provide an accurate method for grading prostate cancer. But these systems are not easy to develop because they require significant amounts of pixel level annotated data. Since the pathologists' clinical reports often contain only slide-level labels, this type of data is rarely available. Therefore, the development of methods that can learn using only slide-level labels and do not require manual pixel level annotation would be a significant advance in this field. In this paper, we propose a weakly-supervised convolutional neural network for Gleason grading of prostate cancer tissue microarrays with Hematoxylin and Eosin staining, without using pixel level annotations. To choose a suitable classifier, we explored different pre-trained models as a feature extractor, namely ResNet-50, VGG-19 and MobileNet. We used class-wise data augmentation method to face the imbalance problem in our dataset. The best network architecture was ResNet-50 as backbone. In the test cohort, ResNet-50 as backbone with class-wise data augmentation achieved an accuracy of 80% for the Gleason grades.
Papers List
List of archived papers
Evolutionary Approach to GAN Hyperparameter Tuning: Minimizing Discriminator and Generator Loss Functions
Sajad Haghzad Klidbary - Anahita Babaei - Ramin Ghorbani
A Framework for Automated Cardiovascular Magnetic Resonance Image Quality Scoring based on EuroCMR Registry Criteria
Shahabedin Nabavi - Mohsen Ebrahimi Moghaddam - Ahmad Ali Abin - Alejandro Frangi
Joint mobility-aware offloading and UAV position optimization in Blockchain-enabled 5G
Zeinab Rabbani - Zeinab Movahedi
A Graph-based Feature Selection using Class-Feature Association Map (CFAM)
Motahare Akhavan - Seyed Mohammad Hossein Hasheminejad
Adaptive Channel Estimation for MIMO-OFDM Systems in Impulsive Noise Environments
Mojtaba Hajiabadi
No-Reference Video Quality Assessment by Deep Feature Maps Relations
Amir Hossein Bakhtiari - Azadeh Mansouri
Dynamic Knowledge Enhanced Neural Fashion Trend Forecasting with Quantile Loss
Fatemeh Rooholamini - Reza Azmi - Mobina Khademhossein - Maral Zarvani
Averting Mode Collapse for Generative Zero-Shot Learning
Shayan Ramazi - Setare Shabani
Computational Microscopy Based on Fourier Ptychography using Embedded Architecture
Rezvan Mir - Abedin Vahedian
Enhanced Skin Cancer Classification Using Deep Learning and Gradient Boosting Techniques
Amir Mohammad Sharafaddini - Najme Mansouri
more
Samin Hamayesh - Version 41.7.6