0% Complete
Home
/
13th International Conference on Computer and Knowledge Engineering
Improving Machine Learning Classification of Heart Disease Using the Graph-Based Techniques
Authors :
Abolfazl Dibaji
1
Sadegh Sulaimany
2
1- Department of Computer Engineering University of Kurdistan Sanandaj, Iran
2- Department of Computer Engineering University of Kurdistan Sanandaj, Iran
Keywords :
Machine learning،graph-based،heart disease classification،ECG
Abstract :
Machine learning (ML) has revolutionized healthcare, including, the classification of heart diseases. Traditional ML techniques often struggle with complex and high-dimensional datasets of heart diseases. Graph-based techniques have emerged as a promising approach to address these challenges by capturing intricate relationships between data points. The aim of this article is to apply and improve ML classification of heart diseases using graph-based techniques. This study utilizes a dataset of 1190 samples with 23 features, including features derived from graphs. Several ML models are employed, and their performance is evaluated using accuracy, precision, and recall. The results demonstrate significant advancements in the classification of heart diseases, with the graph-based network model achieving an accuracy of 95%. The superior performance of the graph-based model can be attributed to its ability to take into account complex indirect relationships between risk factors and disease outcomes. Further improvements can be made by considering advanced properties of complex networks, such as their small-world or scale-free characteristics.
Papers List
List of archived papers
Hybrid Flow-Rule Placement Method of Proactive and Reactive in SDNs
Mohammadreza Khoobbakht - Mohammadreza Noei - Mohammadreza Parvizimosaed
An Energy-efficient Clustering Method based on Butterfly Optimization Algorithm by Considering the Criterion of Intra-cluster Distances in WSNs
Fariba Saghi Hadi S. Aghdasi
Bipartite link prediction improvement using the effective utilization of edge betweenness centrality
Sadegh Sulaimany Sulaimany - Yasin Amini
An intelligent linguistic error detection approach to automated diagnosis of Dyslexia disorder in Persian speaking children
Fatemeh Asghari - Mahsa Khorasani - Mohsen Kahani - Seyed Amir Amin Yazdi - Mahdi Arkhodi Ghalenoei
Extreme Gradient Boosting (XGBoost) Regressor and Shapley Additive Explanation for Crop Yield Prediction in Agriculture
Dennis A/L Mariadass - Ervin Gubin Moung - Maisarah Mohd Sufian - Ali Farzamnia
An Ensemble CNN for Brain Age Estimation based on Hippocampal Region Applicable to Alzheimer's Diagnosis
Zahra Qodrati - Seyedeh Masoumeh Taji - Habibollah Danyali - Kamran Kazemi
A novel hybrid DMHS-GMDH algorithm to predict COVID-19 pandemic time series
Ahmad Taheri - Shahriar Ghashghaei - Amin Beheshti - Keyvan RahimiZadeh
Emotion Recognition In Persian Speech Using Deep Neural Networks
Ali Yazdani - Hossein Simchi - Yasser Shekofteh
Driving Violation Detection Using Vehicle Data and Environmental Conditions
Masood Ghasemi - Mahmood Fathy - Mohammad Shahverdy
ExaAEC: A New Multi-label Emotion Classification Corpus in Arabic Tweets
Saeed Sarbazi-Azad - Ahmad Akbari - Mohsen Khazeni
more
Samin Hamayesh - Version 42.4.1