0% Complete
Home
/
12th International Conference on Computer and Knowledge Engineering
Extreme Gradient Boosting (XGBoost) Regressor and Shapley Additive Explanation for Crop Yield Prediction in Agriculture
Authors :
Dennis A/L Mariadass
1
Ervin Gubin Moung
2
Maisarah Mohd Sufian
3
Ali Farzamnia
4
1- Faculty of Computing and Informatics Universiti Malaysia Sabah
2- Faculty of Computing and Informatics Univerisity Malaysia Sabah
3- Faculty of Computing and Informatics Universiti Malaysia Sabah
4- universiti malaysia sabah
Keywords :
crop yield،prediction،machine learning،xgboost،shapley،gradient boosting
Abstract :
The primary purpose of precision agriculture is to maximize crop yields while utilizing a limited amount of land resources. Apart from industrialization, which fuelled Malaysia's significant economy and development, the country's agriculture industry performs a major role in guaranteeing food security and safety, as well as long-term development and wealth creation. The nation's policymakers must rely on reliable crop yield predictions to acquire easy export and import evaluations to improve national food security. Machine Learning can help anticipate yields more accurately. This paper proposes to use the XGBoost model for annual crop yield prediction in Malaysia. Experiments on the generated yield dataset shows promising results with 0.98 R-Squared value and outperformed the state-of-art models. The performance of the proposed model is extensively analyzed using the Shapley Additive Explanation (SHAP) to identify the important attributes in the crop yield prediction. The predictions provided by machine learning algorithms will aid farmers in deciding what to grow because of this research.
Papers List
List of archived papers
Efficient Prediction of Cardiovascular Disease via Extra Tree Feature Selection
Mina Abroodi - Mohammad Reza Keyvanpour - Ghazaleh Kakavand Teimoory
Assessing Users' Influence on Respondents in Conversation Quality: A Quantitative Study on Reddit Based on the Cooperative Principle
Afsaneh Habibi - Fattaneh Taghiyareh
A New Application of Machine Learning Based Methods for Disk Space Variation Fault Diagnosis in Transformer Windings
Reza Behkam - Amir Lotfi - Gevork B. Gharehpetian
A Comprehensive Approach to SMS Spam Filtering Integrating Embedded and Statistical Features
Shaghayegh Hosseinpour - Mohammad Reza Keyvanpour
Non-Negative Matrix Factorization improves Residual Neural Networks
Hojjat Moayed
Farsi Optical Character Recognition Using a Transformer-based Model
Fatemeh Asadi Zeydabadi - Elham Shabaninia - Hossein Nezamabadi-pour - Melika Shojaee
Exploring 3D Transfer Learning CNN Models for Alzheimer’s Disease Diagnosis from MRI Images
Fatemehsadat Ghanadi Ladani - Hamidreza Baradaran Kashani
Machine and Deep Learning Models for Prediction of Small Molecule–Biotech Drug Pair’s Interactions
Fatemeh Nasiri - Mohsen Hooshmand
Deep Inside Tor: Exploring Website Fingerprinting Attacks on Tor Traffic in Realistic Settings
Amirhossein Khajehpour - Farid Zandi - Navid Malekghaini - Mahdi Hemmatyar - Naeimeh Omidvar - Mahdi Jafari Siavoshani
A Framework for Automated Cardiovascular Magnetic Resonance Image Quality Scoring based on EuroCMR Registry Criteria
Shahabedin Nabavi - Mohsen Ebrahimi Moghaddam - Ahmad Ali Abin - Alejandro Frangi
more
Samin Hamayesh - Version 42.4.1