0% Complete
Home
/
12th International Conference on Computer and Knowledge Engineering
Extreme Gradient Boosting (XGBoost) Regressor and Shapley Additive Explanation for Crop Yield Prediction in Agriculture
Authors :
Dennis A/L Mariadass
1
Ervin Gubin Moung
2
Maisarah Mohd Sufian
3
Ali Farzamnia
4
1- Faculty of Computing and Informatics Universiti Malaysia Sabah
2- Faculty of Computing and Informatics Univerisity Malaysia Sabah
3- Faculty of Computing and Informatics Universiti Malaysia Sabah
4- universiti malaysia sabah
Keywords :
crop yield،prediction،machine learning،xgboost،shapley،gradient boosting
Abstract :
The primary purpose of precision agriculture is to maximize crop yields while utilizing a limited amount of land resources. Apart from industrialization, which fuelled Malaysia's significant economy and development, the country's agriculture industry performs a major role in guaranteeing food security and safety, as well as long-term development and wealth creation. The nation's policymakers must rely on reliable crop yield predictions to acquire easy export and import evaluations to improve national food security. Machine Learning can help anticipate yields more accurately. This paper proposes to use the XGBoost model for annual crop yield prediction in Malaysia. Experiments on the generated yield dataset shows promising results with 0.98 R-Squared value and outperformed the state-of-art models. The performance of the proposed model is extensively analyzed using the Shapley Additive Explanation (SHAP) to identify the important attributes in the crop yield prediction. The predictions provided by machine learning algorithms will aid farmers in deciding what to grow because of this research.
Papers List
List of archived papers
Energy-Aware Dynamic Digital Twin Placement in Mobile Edge Computing
Mahdi Hematyar - Zeinab Movahedi
Hybrid Flow-Rule Placement Method of Proactive and Reactive in SDNs
Mohammadreza Khoobbakht - Mohammadreza Noei - Mohammadreza Parvizimosaed
Prediction of West Texas Intermediate Crude-oil Price Using Hybrid Attention-based Deep Neural Networks: A Comparative Study
Alireza Jahandoost - Mahboobeh Houshmand - Seyyed Abed Hosseini
Age Estimation Based on Facial Images Using Hybrid Features and Particle Swarm Optimization
NILOUFAR MEHRABI - SAYED PEDRAM HAERI BOROUJENI
SAT Based Analogy Evaluation Framework For Persian Word Embeddings
Seyed Ehsan Mahmoudi - Mehrnoush Shamsfard
Link Prediction for Recommendation based on Complex Representation of Items Similarities
Masoumeh Alinia - Seyed Mohammad Hossein Hasheminejad - Hadi Shakibian
A novel hybrid DMHS-GMDH algorithm to predict COVID-19 pandemic time series
Ahmad Taheri - Shahriar Ghashghaei - Amin Beheshti - Keyvan RahimiZadeh
Overview of Electric Vehicles Charging Stations in Smart Grids
Mohammed Wadi - Wisam Elmasry - Mohammed Jouda - Hossein Shahinzadeh - Gevork B. Gharehpetian
Predicting cascading failure with machine learning methods in the interdependent networks
Mohamad Hossein Maghsoodi - Mohamad Khansari
An Efficient Approach for Breast Abnormality Detection through High-Level Features of Thermography Images
Farhad Abedinzadeh Torghabeh - Yeganeh Modaresnia - Seyyed Abed Hosseini
more
Samin Hamayesh - Version 41.7.6