0% Complete
Home
/
12th International Conference on Computer and Knowledge Engineering
Extreme Gradient Boosting (XGBoost) Regressor and Shapley Additive Explanation for Crop Yield Prediction in Agriculture
Authors :
Dennis A/L Mariadass
1
Ervin Gubin Moung
2
Maisarah Mohd Sufian
3
Ali Farzamnia
4
1- Faculty of Computing and Informatics Universiti Malaysia Sabah
2- Faculty of Computing and Informatics Univerisity Malaysia Sabah
3- Faculty of Computing and Informatics Universiti Malaysia Sabah
4- universiti malaysia sabah
Keywords :
crop yield،prediction،machine learning،xgboost،shapley،gradient boosting
Abstract :
The primary purpose of precision agriculture is to maximize crop yields while utilizing a limited amount of land resources. Apart from industrialization, which fuelled Malaysia's significant economy and development, the country's agriculture industry performs a major role in guaranteeing food security and safety, as well as long-term development and wealth creation. The nation's policymakers must rely on reliable crop yield predictions to acquire easy export and import evaluations to improve national food security. Machine Learning can help anticipate yields more accurately. This paper proposes to use the XGBoost model for annual crop yield prediction in Malaysia. Experiments on the generated yield dataset shows promising results with 0.98 R-Squared value and outperformed the state-of-art models. The performance of the proposed model is extensively analyzed using the Shapley Additive Explanation (SHAP) to identify the important attributes in the crop yield prediction. The predictions provided by machine learning algorithms will aid farmers in deciding what to grow because of this research.
Papers List
List of archived papers
Effect of Tissue Excitation in Breast Cancer Detection from Ultrasound RF Time Series: Phantom studies
Elaheh Norouzi Ghehi - Ali Fallah - Saeid Rashidi - Maryam Mehdizadeh Dastjerdi
Identifying novel disease genes based on protein complexes and biological features
Mahshad Hashemi - Eghbal Mansoori
Driving Violation Detection Using Vehicle Data and Environmental Conditions
Masood Ghasemi - Mahmood Fathy - Mohammad Shahverdy
An Improved and Accurate Measure for Mining Correlated High-utility Itemsets
Amir Masoud Heidari Orojloo - Morteza Keshtkaran
Speech Emotion Recognition Using a Hierarchical Adaptive Weighted Multi-Layer Sparse Auto-Encoder Extreme Learning Machine with New Weighting and Spectral/SpectroTemporal Gabor Filter Bank Features
Fatemeh Daneshfar - Seyed Jahanshah Kabudian
Computational Microscopy Based on Fourier Ptychography using Embedded Architecture
Rezvan Mir - Abedin Vahedian
An Effective Connectomics Approach for Diagnosing ADHD using Eyes-open Resting-state MEG
Nastaran Hamedi - Ali Khadem - Sajjad Vardast - Mehdi Delrobaei - Abbas Babajani-Feremi
MCRS-SAE : multi criteria recommender system based on sparse autoencoder
Amir reza Kalantarnezhad - Javad Hamidzadeh
Bridging the Synthetic-to-Real Gap (BSRG): Creating Simulated Datasets for Domain Adaptation to Enhance Vehicle Detection
Behnaz Sadeghigol - Mohammad Ali Keyvanrad
An optimal workflow scheduling method in cloud-fog computing using three-objective Harris-Hawks algorithm
Ahmadreza Montazerolghaem - Maryam Khosravi - Fatemeh Rezaee
more
Samin Hamayesh - Version 42.2.1