0% Complete
Home
/
12th International Conference on Computer and Knowledge Engineering
Deep Inside Tor: Exploring Website Fingerprinting Attacks on Tor Traffic in Realistic Settings
Authors :
Amirhossein Khajehpour
1
Farid Zandi
2
Navid Malekghaini
3
Mahdi Hemmatyar
4
Naeimeh Omidvar
5
Mahdi Jafari Siavoshani
6
1- Department of Computer Engineering. Sharif University of Technology. Tehran, Iran
2- Department of Computer Engineering. Sharif University of Technology. Tehran, Iran
3- Department of Computer Engineering. Sharif University of Technology. Tehran, Iran
4- Department of Computer Engineering. Sharif University of Technology. Tehran, Iran
5- Institute for Research in Fundamental Sciences, Tehran, Iran
6- Department of Computer Engineering. Sharif University of Technology. Tehran, Iran
Keywords :
Deep Learning،Machine Learning،Website Fingerprinting،Tor Network،Information Leakage
Abstract :
In recent years, with the new advances in the areas of machine learning, Tor's advertised anonymity has been widely threatened. Despite all the protection mechanisms employed by Tor, attackers can now draw inferences on the online activities of a Tor user. Although such an study is critical for users of Tor, most of the existing works in this regard are based on unrealistic assumptions and settings. In this work, we explore the effectiveness of fingerprinting attacks under realistic settings. We focus on identifying the target websites and applications visited or used by a Tor user, through analyzing the heavily encrypted traffic that any local eavesdropper can also see. Unlike existing works, we focus on small groups of consecutive packets, which allows us to study more complex user behavior. By modifying our Tor client to label the Tor cells with the name of the destined application or website name, could label the packets even when multiple websites and applications were simultaneously using the Tor proxy. To label the network packets, the byte sequence of a labeled cell was located inside the packets, which, to the best of our knowledge, is the most accurate way for labeling the packets. In this way, we accomplished to gather an extensive dataset of Tor traffic, corresponding to different types of user’s behavior. Finally, we proposed several deep neural network structures to classify the packets of different websites and analyzed the effectiveness of Tor’s encryption methods in realistic settings by achieving an accuracy of 3% in classifying 100 different websites. The results show the effectiveness of Tor’s multi-layer encryption scheme.
Papers List
List of archived papers
SASIAF, An Scalable Accelerator For Seismic Imaging on Amazon AWS FPGAs
Mostafa Koraei - S.Omid Fatemi
The Effect of Network Environment on Traffic Classification
Abolghasem Rezaei Khesal - Mehdi Teimouri
Efficient Sub-Carrier Relationship Extraction for Human Activity Recognition via EEGNet in Wireless Sensing
Siavash Zaravashan - Sadegh ArefiZadeh - Sajjad Torabi
Information Theoretic Learning-based Deep Embedded Clustering (ITL-DEC)
Hoda Shad - Mona Zamiri - Tahereh Bahreini - Reza Monsefi - Ghoshe Abed Hodtani
A routing method with the approach of reducing energy consumption in WSNs with the Jellyfish Search (JS) optimizer algorithm and unequal clustering
Ehsan Gholami - Javad Hamidzadeh
Improved TrustChain for Lightweight Devices
Seyed Salar Ghazi - Haleh Amintoosi
Emotion Recognition In Persian Speech Using Deep Neural Networks
Ali Yazdani - Hossein Simchi - Yasser Shekofteh
Multi-source Ensemble Model for Scene Recognition
Amir Hossein Saleknia - Ahmad Ayatollahi
Joint mobility-aware offloading and UAV position optimization in Blockchain-enabled 5G
Zeinab Rabbani - Zeinab Movahedi
LPCNet: Lane detection by lane points correction network in challenging environments based on deep learning
Sina BaniasadAzad - Seyed Mohammadreza Mousavi mirkolaei
more
Samin Hamayesh - Version 41.7.6