0% Complete
Home
/
12th International Conference on Computer and Knowledge Engineering
Deep Inside Tor: Exploring Website Fingerprinting Attacks on Tor Traffic in Realistic Settings
Authors :
Amirhossein Khajehpour
1
Farid Zandi
2
Navid Malekghaini
3
Mahdi Hemmatyar
4
Naeimeh Omidvar
5
Mahdi Jafari Siavoshani
6
1- Department of Computer Engineering. Sharif University of Technology. Tehran, Iran
2- Department of Computer Engineering. Sharif University of Technology. Tehran, Iran
3- Department of Computer Engineering. Sharif University of Technology. Tehran, Iran
4- Department of Computer Engineering. Sharif University of Technology. Tehran, Iran
5- Institute for Research in Fundamental Sciences, Tehran, Iran
6- Department of Computer Engineering. Sharif University of Technology. Tehran, Iran
Keywords :
Deep Learning،Machine Learning،Website Fingerprinting،Tor Network،Information Leakage
Abstract :
In recent years, with the new advances in the areas of machine learning, Tor's advertised anonymity has been widely threatened. Despite all the protection mechanisms employed by Tor, attackers can now draw inferences on the online activities of a Tor user. Although such an study is critical for users of Tor, most of the existing works in this regard are based on unrealistic assumptions and settings. In this work, we explore the effectiveness of fingerprinting attacks under realistic settings. We focus on identifying the target websites and applications visited or used by a Tor user, through analyzing the heavily encrypted traffic that any local eavesdropper can also see. Unlike existing works, we focus on small groups of consecutive packets, which allows us to study more complex user behavior. By modifying our Tor client to label the Tor cells with the name of the destined application or website name, could label the packets even when multiple websites and applications were simultaneously using the Tor proxy. To label the network packets, the byte sequence of a labeled cell was located inside the packets, which, to the best of our knowledge, is the most accurate way for labeling the packets. In this way, we accomplished to gather an extensive dataset of Tor traffic, corresponding to different types of user’s behavior. Finally, we proposed several deep neural network structures to classify the packets of different websites and analyzed the effectiveness of Tor’s encryption methods in realistic settings by achieving an accuracy of 3% in classifying 100 different websites. The results show the effectiveness of Tor’s multi-layer encryption scheme.
Papers List
List of archived papers
HiCAP: Hierarchical Clustering-based Attention Pooling for Graph Representation Learning
Parsa Haddadian - Rooholah Abedian - Ali Moeini
A Hybrid Echo State Network for Hypercomplex Pattern Recognition, Classification, and Big Data Analysis
Mohammad Jamshidi - Fatemeh Daneshfar
Automated Person Identification from Hand Images\\using Hierarchical Vision Transformer Network
Zahra Ebrahimian - Seyed Ali Mirsharji - Ramin Toosi - Mohammad Ali Akhaee
Intelligent Interpretation of Frequency Response Signatures to Diagnose Radial Deformation in Transformer Windings Using Artificial Neural Network
Reza Behkam - Hossein Karami - Mehdi Salay Naderi - Gevork B. Gharehpetian
R2-BAC: A Novel Blockchain and IoT-Based Access Control Model for Supply Chain Management
Sadegh Sohani - Farnaz Kamranfar - Haleh Amintoosi - Mohammad Allahbakhsh
An Adaptive Budget and Deadline-aware Algorithm for Scheduling Workflows Ensemble in IaaS Clouds
Negin Shafinezhad - Hamid Abrishami - Saeid Abrishami
An optimal workflow scheduling method in cloud-fog computing using three-objective Harris-Hawks algorithm
Ahmadreza Montazerolghaem - Maryam Khosravi - Fatemeh Rezaee
Paddy Plant Stress Identification Using Few-Shot Learning Framework
Ervin Gubin Moung - Pavindrah Naidu a/l Narayanasamy Naiidu - Maisarah Mohd Sufian - Valentino Liaw - Ali Farzamnia - Lorita Angeline
Introducing E4MT and LMBNC: Persian pre-processing utilities
Zakieh Shakeri - Mehran Ziabary - Behrooz Vedadian - Fatemeh Azadi - Saeed Torabzadeh - Arian Atefi
A Self-Configurable Model for Cloud Resource Allocation
Ali Bazghandi
more
Samin Hamayesh - Version 42.2.1