0% Complete
Home
/
13th International Conference on Computer and Knowledge Engineering
Developing Convolutional Neural Networks using a Novel Lamarckian Co-Evolutionary Algorithm
Authors :
Zaniar Sharifi
1
Khabat Soltanian
2
Ali Amiri
3
1- Faculty of Electrical and Computer Engineering University of Zanjan
2- Faculty of Electrical and Computer Engineering University of Zanjan
3- Faculty of Electrical and Computer Engineering University of Zanjan
Keywords :
evolutionary algorithm،evolving deep neural networks،neural architecture search،co-evolution
Abstract :
Neural Architecture Search (NAS) methods autonomously discover high-accuracy neural network architectures, outperforming manually crafted ones. However, The NAS methods require high computational costs due to the high dimension search space and the need to train multiple candidate solutions. This paper introduces LCoDeepNEAT, an instantiation of Lamarckian genetic algorithms, which extends the foundational principles of the CoDeepNEAT framework. LCoDeepNEAT co-evolves CNN architectures and their respective final layer weights. The evaluation process of LCoDeepNEAT entails a single epoch of SGD, followed by the transference of the acquired final layer weights to the genetic representation of the network. In addition, it expedites the process of evolving by imposing restrictions on the architecture search space, specifically targeting architectures comprising just two fully connected layers for classification. Our method yields a notable improvement in the classification accuracy of candidate solutions throughout the evolutionary process, ranging from 2% to 5.6%. This outcome underscores the efficacy and effectiveness of integrating gradient information and evolving the last layer of candidate solutions within LCoDeepNEAT. LCoDeepNEAT is assessed across six standard image classification datasets and benchmarked against eight leading NAS methods. Results demonstrate LCoDeepNEAT’s ability to swiftly discover competitive CNN architectures with fewer parameters, conserving computational resources, and achieving superior classification accuracy compared to other approaches.
Papers List
List of archived papers
Zone-Based Federated Learning in Indoor Positioning
Omid Tasbaz - Vahideh Moghtadaiee - Bahar Farahani
Classification of COVID-19 and Nodule in CT Images using Deep Convolutional Neural Network
Amirhossein Ghaemi - Seyyed Amir Mousavi mobarakeh - Habibollah Danyali - Kamran Kazemi
A Survey on Semi-Automated and Automated Approaches for Video Annotation
Samin Zare - Mehran Yazdi
The process of multi class fake news dataset generation
Sajjad Rezaei - Mohsen Kahani - Behshid Behkamal
Pyramid Transformer for Traffic Sign Detection
Omid Nejati manzari - Amin Boudesh - Shahriar B. Shokouhi
Chaotic multi-population ABC algorithm based on memory and levy flight for solving dynamic job shop scheduling problems
Mohammad Ali Zarif - Javad Hamidzadeh
Deep Learning-Driven Beamforming Optimization for High-Performance 5G Planar Antenna Arrays
Rahman Mohammadi - Seyed Reza Razavi Pour
Effect of Tissue Excitation in Breast Cancer Detection from Ultrasound RF Time Series: Phantom studies
Elaheh Norouzi Ghehi - Ali Fallah - Saeid Rashidi - Maryam Mehdizadeh Dastjerdi
CSI-Based Human Activity Recognition using Convolutional Neural Networks
Parisa Fard Moshiri - Mohammad Nabati - Reza Shahbazian - Seyed Ali Ghorashi
Attention-Boosted Ensemble of Pre-trained Convolutional Neural Networks for Accurate Diabetic Retinopathy Detection
Benyamin Mirab Golkhatmi - Mohammad Hossein Moattar
more
Samin Hamayesh - Version 42.4.1