0% Complete
Home
/
14th International Conference on Computer and Knowledge Engineering
Fine-tuned Generative Adversarial Network-based Model for Medical Image Super-Resolution
Authors :
Alireza Aghelan
1
Modjtaba Rouhani
2
1- Ferdowsi university of mashhad
2- Ferdowsi university of mashhad
Keywords :
Medical images،Super-resolution،Deep learning،Generative adversarial network،Transfer learning
Abstract :
In the field of medical image analysis, there is a substantial need for high-resolution (HR) images to improve diagnostic accuracy. However, it is a challenging task to obtain HR medical images, as it requires advanced instruments and significant time. Deep learning-based super-resolution methods can help to improve the resolution and perceptual quality of low-resolution (LR) medical images. Recently, Generative Adversarial Network (GAN) based methods have shown remarkable performance among deep learning-based super-resolution methods. Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN) is a practical model for recovering HR images from real-world LR images. In our proposed approach, we use transfer learning technique and fine-tune the pre-trained Real-ESRGAN model using medical image datasets. This technique helps in improving the performance of the model. We employ the high-order degradation model of the Real-ESRGAN which better simulates real-world image degradations. This adaptation allows for generating more realistic degraded medical images, resulting in improved performance. The focus of this paper is on enhancing the resolution and perceptual quality of chest X-ray and retinal images. We use the Tuberculosis chest X-ray (Shenzhen) dataset and the STARE dataset of retinal images for fine-tuning the model. The proposed model achieves superior perceptual quality compared to the Real-ESRGAN model, effectively preserving fine details and generating images with more realistic textures.
Papers List
List of archived papers
Persis: A Persian Font Recognition Pipeline Using Convolutional Neural Networks
Mehrdad Mohammadian - Neda Maleki - Tobias Olsson - Fredrik Ahlgren
Intensity-Image Reconstruction Using Event Camera Data by Changing in LSTM Update
Arezoo Rahmati Soltangholi - Ahad Harati - Abedin Vahedian
EfficientNetB0’s Hybrid Approach for Brain Tumor Classification from MRI Images Using Deep Learning and Bagging Trees
Yeganeh Modaresnia - Farhad Abedinzadeh Torghabeh - Seyyed Abed Hosseini
A Review on Machine Learning Methods for Workload Prediction in Cloud Computing
Mohammad Yekta - Hadi Shahriar Shahhoseini
Robust Learning to Learn Graph Topologies
Navid Akhavan Attar - Ali Fahim
XAI for Transparent Autonomous Vehicles: A New Approach to Understanding Decision-Making in Self-driving Cars
Maryam Sadat Hosseini Azad - Amir Abbas Hamidi Imani - Shahriar Baradaran Shokouhi
Extreme Gradient Boosting (XGBoost) Regressor and Shapley Additive Explanation for Crop Yield Prediction in Agriculture
Dennis A/L Mariadass - Ervin Gubin Moung - Maisarah Mohd Sufian - Ali Farzamnia
Virtual Network Embedding based on Univariate Distribution Estimation
Arezoo Jahani
Graph Representation Learning Towards Patents Network Analysis
Mohammad Heydari - Babak Teimourpour
Computational Microscopy Based on Fourier Ptychography using Embedded Architecture
Rezvan Mir - Abedin Vahedian
more
Samin Hamayesh - Version 42.4.1