0% Complete
Home
/
11th International Conference on Computer and Knowledge Engineering
An Effective Connectomics Approach for Diagnosing ADHD using Eyes-open Resting-state MEG
Authors :
Nastaran Hamedi
1
Ali Khadem
2
Sajjad Vardast
3
Mehdi Delrobaei
4
Abbas Babajani-Feremi
5
1- Department of Biomedical Engineering. Faculty of Electrical Engineering. K. N. Toosi University of Technology. Tehran, Iran
2- Department of Biomedical Engineering. Faculty of Electrical Engineering. K. N. Toosi University of Technology. Tehran, Iran
3- Department of Electrical Engineering. Sharif University of Technology. Tehran, Iran
4- Department of Biomedical Engineering. Faculty of Electrical Engineering. K. N. Toosi University of Technology. Tehran, Iran
5- Dell Medical School University of Texas at Austin. Austin, TX, USA
Keywords :
Attention Deficit Hyperactivity Disorder (ADHD), Resting-state Magnetoencephalography (rs-MEG), Effective connectivity, Granger Causality (GC), Machine learning, minimum redundancy maximum relevance (mRMR) feature selection
Abstract :
Attention Deficit Hyperactivity Disorder (ADHD) is the most common neurological disorder in childhood. The apparent symptoms of this disorder include a significant lack of attention, impulsivity, and hyperactivity. As this disorder causes school problems and social incompatibility, an accurate diagnosis can help to mitigate these problems. Magnetoencephalography (MEG) is an appealing technique for diagnosing ADHD due to being non-invasive and having a high temporal and a good spatial resolution. In this paper, we proposed an effective brain connectomics approach based on eyes-open resting-state MEG (rs-MEG) to identify subjects with ADHD from healthy controls (HC). We calculated the effective connectivity between the MEG sensors using Granger causality (GC). Then we used those GC measures as input features of six base classifiers and a meta-classifier based on stacking ensemble learning using those six base classifiers to classify ADHD and HC. The most discriminative features selected by the minimum redundancy maximum relevance (mRMR) feature selection algorithm were fed to all base classifiers and also the meta-classifier. We achieved an accuracy of 89.82% using ten GC features and the meta-classifier. Moreover, our proposed method outperformed eyes-closed rs-MEG studies in the diagnosis of ADHD. It is noteworthy that there has been no study on diagnosing ADHD using either eyes-open rs-MEG or GC. Thus, the novelty of our proposed method is to use eyes-open rs-MEG data and GC to diagnose ADHD. Our results demonstrate the capability of an effective connectomics approach based on eyes-open rs-MEG for diagnosis of ADHD.
Papers List
List of archived papers
GAP: Fault tolerance Improvement of Convolutional Neural Networks through GAN-aided Pruning
Pouya Hosseinzadeh - Yasser Sedaghat - Ahad Harati
FedBrain-Distill: Communication-Efficient Federated Brain Tumor Classification Using Ensemble Knowledge Distillation on Non-IID Data
Rasoul Jafari Gohari - Laya Aliahmadipour - Ezat Valipour
Information Theoretic Learning-based Deep Embedded Clustering (ITL-DEC)
Hoda Shad - Mona Zamiri - Tahereh Bahreini - Reza Monsefi - Ghoshe Abed Hodtani
Classification of benign and malignant tumors in Digital Breast Tomosynthesis images using Radiomic-based methods
Farangis Sajadi moghadam - Saeid Rashidi
Designing an IT2 Fuzzy Rule-based System for Emotion Recognition Using Biological Data
Mahsa Keshtkar - Hooman Tahayori
Low-Cost and Hardware Efficient Implementation of Pooling Layers for Stochastic CNN Accelerators
Mobin Vaziri - Hadi Jahanirad
Experimental evaluation and comparison of anti-pattern detection tools by the gold standard
Somayeh Kalhor - Mohammad reza Keyvanpour - Afshin Salajegheh
FGM Copula based Analysis of Coverage Region for Wireless Three-User Multiple Access Channel with Correlated Channel Coefficients
Mona Sadat Mohsenzadeh - Ghosheh Abed Hodtani
Identification of Botnets and Nodes Attacking Smart Cities by Majority Voting Mechanism and Feature Selection
Maliheh Araghchi - Nazbanoo Farzaneh
BioBERT-based SNP-traits Associations Extraction from Biomedical Literature
Mohammad Dehghani - Behrouz Bokharaeian - Zahra Yazdanparast
more
Samin Hamayesh - Version 41.7.6