0% Complete
Home
/
14th International Conference on Computer and Knowledge Engineering
Deep Learning-Based Malaysian Sign Language (MSL) Recognition: Exploring the Impact of Color Spaces
Authors :
Ervin Gubin Moung
1
Precilla Fiona Suwek
2
Maisarah Mohd Sufian
3
Valentino Liaw
4
Ali Farzamnia
5
Wei Leong Khong
6
1- Faculty of Computing and Informatics University Malaysia Sabah
2- Faculty of Computing and Informatics University Malaysia Sabah
3- Faculty of Computing and Informatics Universiti Malaysia Sabah
4- Faculty of Computing and Informatics Universiti Malaysia Sabah
5- School of Computing and Engineering University of Huddersfield
6- School of Engineering Monash University Malaysia
Keywords :
sign language،Malaysian Sign Language،color space،ResNet18،Convolutional Neural Network (CNN)
Abstract :
Sign Language is one form of communication for this group of people to communicate with each other. Not only for people with hearing problems but sign language is also useful for people who are mute or have problem speaking. The most used sign language is the American Sign Language (ASL) that is widely used in English speaking countries. In Malaysia, Bahasa Isyarat Malaysia (BIM) or Malaysian Sign Language (MSL) is still new to the community in Malaysia. In this project, a dataset with 5980 images of the signed alphabet is used to train models to recognize what the signs mean. The problem this project aims to address is the limited research and available datasets in the field of Malaysian Sign Language (MSL) recognition using deep learning and various color spaces. Two models that are used are Convolutional Neural Network (CNN) and Residual Network 18 (ResNet18). The images are also converted into different color spaces which are RGB, YCbCr, Grayscale and the combination of RGB and YCbCr. From the results, RGB is the best color space with CNN without any image processing technique - 80% testing accuracy, with Histogram Equalization (HE) - 82.40% testing accuracy, and with Contrast Limited Adaptive HE (CLAHE) - 83.90%. Whereas YCbCr is the best color space when using ResNet18 without any image processing technique - 88% testing accuracy, with HE - 84.40% testing accuracy, and with CLAHE - 88.30%. The precision, recall, and F1-score metrics are also have been used to evaluate the efficacy of the suggested system.
Papers List
List of archived papers
Multi-source Ensemble Model for Scene Recognition
Amir Hossein Saleknia - Ahmad Ayatollahi
An Improved and Accurate Measure for Mining Correlated High-utility Itemsets
Amir Masoud Heidari Orojloo - Morteza Keshtkaran
LPCNet: Lane detection by lane points correction network in challenging environments based on deep learning
Sina BaniasadAzad - Seyed Mohammadreza Mousavi mirkolaei
Improvement of Credit Scoring by LSTM Autoencoder Model
Milad Sattari Maleki - Seyedeh Niusha Motevallian - Faezehsadat Hosseini - Mohammad Sabokrou - Hamidreza Soltanalizadeh Maleki
IranITJobs2021: a Dataset for Analyzing Iranian Online IT Job Advertisements Collected Using a New Crowdsourcing Process
Fakhroddin Noorbehbahani - Nikta Akbarpour - Mohammad Reza Saeidi
Parallel Local Feature Selection For High-dimensional Data
Zhaleh Manbari - Chiman Salavati - Fardin AkhlaghianTab - Barzan Saeedpoor - Himan Delbina - Mahmud Abdulla Mohammad
Classification of COVID-19 and Nodule in CT Images using Deep Convolutional Neural Network
Amirhossein Ghaemi - Seyyed Amir Mousavi mobarakeh - Habibollah Danyali - Kamran Kazemi
Lempel-Ziv-based Hyper-Heuristic Solution for Longest Common Subsequence Problem
Mahdi Nasrollahi - Reza Shami Tanha - Mohsen Hooshmand
Dual Memory Structure for Memory Augmented Neural Networks for Question-Answering Tasks
Amir Bidokhti - Shahrokh Ghaemmaghami
FaaScaler: An Automatic Vertical and Horizontal Scaler for Serverless Computing Environments
Zahra Rezaei - Saeid Abrishami - Seid Nima Moeintaghavi
more
Samin Hamayesh - Version 41.7.6