0% Complete
Home
/
13th International Conference on Computer and Knowledge Engineering
Classification of benign and malignant tumors in Digital Breast Tomosynthesis images using Radiomic-based methods
Authors :
Farangis Sajadi moghadam
1
Saeid Rashidi
2
1- Medical Sciences & Technologies Faculty, Science & Research Branch, Islamic Azad University, Te
2- Medical Sciences & Technologies Faculty, Science & Research Branch, Islamic Azad University, Te
Keywords :
Breast Cancer،Feature Extraction،Learning Algorithm،Radiomic،Tomosynthesis Images
Abstract :
Breast cancer arises from the uncontrolled proliferation of abnormal cells, leading to the formation of a mass in the breast tissue. Digital Breast Tomosynthesis (DBT), a three-dimensional imaging technology, has enhanced both screening and diagnostic outcomes. It provides supplementary information that mitigates the confounding effects of tissue overlap and enhances the detection, identification, and localization of abnormalities. The objective of this research is to classify the benign or malignant nature of masses in DBT images using Radiomic features. This analysis utilizes an open database from TCIA consisting of 224 lesion bounding boxes. To effectively extract relevant features, a two-dimensional central slice of the DBT image encompassing a significant anatomical portion of the breast tumor is utilized. During the pre-processing stage, the rescale intensity method is employed to enhance contrast and improve image quality. Subsequently, a binary mask is utilized to segment the breast tissue mass. Four categories of Radiomic features are then extracted. The study investigates the suitability of these features for benign-malignancy classification. Furthermore, the impact of feature selection, feature balancing, and feature normalization is explored in conjunction with eight different learning algorithms. With this setting, the best result of the evaluation metrics in terms of mean AUC, accuracy, sensitivity and specificity are equal to 88.56%, 88.67%, 77.12 % and 75.11% for Quadratic Discriminant Analysis (QDA), respectively.
Papers List
List of archived papers
Underwater Image Super-Resolution using Generative Adversarial Network-based Model
Alireza Aghelan - Modjtaba Rouhani
A New Hypercube Variant: Pruned Shuffle Connected Cube
Reza Latifi - Mahmoud Naghibzadeh
Adaptive Channel Estimation for MIMO-OFDM Systems in Impulsive Noise Environments
Mojtaba Hajiabadi
R2-BAC: A Novel Blockchain and IoT-Based Access Control Model for Supply Chain Management
Sadegh Sohani - Farnaz Kamranfar - Haleh Amintoosi - Mohammad Allahbakhsh
The process of multi class fake news dataset generation
Sajjad Rezaei - Mohsen Kahani - Behshid Behkamal
Compressing Deep Neural Networks Using Explainable AI
Kimia Soroush - Mohsen Raji - Behnam Ghavami
MultiPath ViT OCR: A Lightweight Visual Transformer-based License Plate Optical Character Recognition
Alireza Azadbakht - Saeed Reza Kheradpisheh - Hadi Farahani
An overview of Business Intelligence research in healthcare organizations using a topic modeling approach
Mohammad Mehraeen - Laya Mahmoudi - Mohammad Hossein Sharifi
Cardiology Disease Diagnosis by Analyzing Histological Microscopic Images Using Deep Learning
Maria Salehpanah - Jafar Tanha - Zahra Jafari - SeyedEhsan Roshan - Sajad Rezaei
Joint mobility-aware offloading and UAV position optimization in Blockchain-enabled 5G
Zeinab Rabbani - Zeinab Movahedi
more
Samin Hamayesh - Version 42.2.1