0% Complete
Home
/
13th International Conference on Computer and Knowledge Engineering
Classification of benign and malignant tumors in Digital Breast Tomosynthesis images using Radiomic-based methods
Authors :
Farangis Sajadi moghadam
1
Saeid Rashidi
2
1- Medical Sciences & Technologies Faculty, Science & Research Branch, Islamic Azad University, Te
2- Medical Sciences & Technologies Faculty, Science & Research Branch, Islamic Azad University, Te
Keywords :
Breast Cancer،Feature Extraction،Learning Algorithm،Radiomic،Tomosynthesis Images
Abstract :
Breast cancer arises from the uncontrolled proliferation of abnormal cells, leading to the formation of a mass in the breast tissue. Digital Breast Tomosynthesis (DBT), a three-dimensional imaging technology, has enhanced both screening and diagnostic outcomes. It provides supplementary information that mitigates the confounding effects of tissue overlap and enhances the detection, identification, and localization of abnormalities. The objective of this research is to classify the benign or malignant nature of masses in DBT images using Radiomic features. This analysis utilizes an open database from TCIA consisting of 224 lesion bounding boxes. To effectively extract relevant features, a two-dimensional central slice of the DBT image encompassing a significant anatomical portion of the breast tumor is utilized. During the pre-processing stage, the rescale intensity method is employed to enhance contrast and improve image quality. Subsequently, a binary mask is utilized to segment the breast tissue mass. Four categories of Radiomic features are then extracted. The study investigates the suitability of these features for benign-malignancy classification. Furthermore, the impact of feature selection, feature balancing, and feature normalization is explored in conjunction with eight different learning algorithms. With this setting, the best result of the evaluation metrics in terms of mean AUC, accuracy, sensitivity and specificity are equal to 88.56%, 88.67%, 77.12 % and 75.11% for Quadratic Discriminant Analysis (QDA), respectively.
Papers List
List of archived papers
Distilled BERT Model In Natural Language Processing
Yazdan Zandiye Vakili - Avisa Fallah - Hedieh Sajedi
Lightweight Local Transformer for COVID-19 Detection Using Chest CT Scans
Hojat Asgarian Dehkordi - Hossein Kashiani - Amir Abbas Hamidi Imani - Shahriar Baradaran Shokouhi
An Exploratory Study of the Relationship between SATD and Other Software Development Activities
Shima Esfandiari - Ashkan Sami
Segmentation of Hard Exudates in Retinal Fundus Images Using BCDU-Net
Nafise Ameri - Nasser Shoeibi - Mojtaba Abrishami
Sotfware defined content popularity estimation for wireless D2D caching networks
Maede Rezaei - AhmadReza Montazerolghaem
EfficientNetB0’s Hybrid Approach for Brain Tumor Classification from MRI Images Using Deep Learning and Bagging Trees
Yeganeh Modaresnia - Farhad Abedinzadeh Torghabeh - Seyyed Abed Hosseini
Disturbance Rejection in Quadruple-Tank System by Proposing New Method in Reinforcement Learning
Alireza Nezamzadeh - Mohammadreza Esmaeilidehkordi
Attention-Boosted Ensemble of Pre-trained Convolutional Neural Networks for Accurate Diabetic Retinopathy Detection
Benyamin Mirab Golkhatmi - Mohammad Hossein Moattar
A Smart Electrochemical Biosensor for Arsenic Detection in Water
Keyvan Asefpour Vakilian
Automatic Infrared-Based Volume and Mass Estimation System for Agricultural Products
Seyed Muhammad Hossein Mousavi - S. Muhammad Hassan Mosavi
more
Samin Hamayesh - Version 42.4.1