0% Complete
Home
/
11th International Conference on Computer and Knowledge Engineering
Lightweight Local Transformer for COVID-19 Detection Using Chest CT Scans
Authors :
Hojat Asgarian Dehkordi
1
Hossein Kashiani
2
Amir Abbas Hamidi Imani
3
Shahriar Baradaran Shokouhi
4
1- School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
2- School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
3- School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
4- School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
Keywords :
COVID-19 Diagnosis, Vision Transformer, Limited dataset, Locality, Long-range Dependencies
Abstract :
As COVID-19 spreads around the globe, many studies have leveraged Convolutional Neural Networks (CNNs) for automated diagnosis of COVID-19 by means of CT images. However, CNNs have mainly failed to explicitly model long-range dependencies, primarily because of their intrinsic locality. To address this issue, Transformers have drawn increasing interest in exploiting long-range dependencies among input data. In this study, we aim to enjoy the merits of both local and global feature extractions in CNN and Transformer architectures. To this end, we go beyond the conventional Transformer frameworks and introduce a highly efficient Transformer architecture for early diagnosis and treatment of COVID-19 patients using CT images. Unlike conventional data-hungry Transformers, our model relaxes the requirement of large-scale training data in vision Transformers and attains on-par or even better performance than the state-of-the-art studies. This flexibility empowers our Transformer architecture to be exploited in data-scarce domains such as medical image analysis. Moreover, we tailor our Transformer architecture in two ways to embody the principle of locality, which once belonged to CNNs. First, we minimally inject convolutional inductive bias into the early blocks of our Transformer architecture and eliminate standard image patching in the vanilla Transformers. Second, unlike typical patch integration in the standard Transformers, we benefit from a deformable convolution in our architecture to adaptively attend to a small set of key features corresponding to nearby patches. Extensive experiential evaluations verify that our Transformer architecture surpasses its counterparts, advances the COVID-19 diagnosis by modeling intrinsic locality of CNNs, alleviates the computational complexity of Transformer architectures, and deals with the lack of large-scale training dataset for COVID-19 diagnosis.
Papers List
List of archived papers
New Design of Efficient Reversible Quantum Saturation Adder
Negin Mashayekhi - Mohammad Reza Reshadinezhad - Shekoofeh Moghimi
Adversarial Robustness Evaluation with Separation Index
Bahareh Kaviani Baghbaderani - Afsaneh Hasanebrahimi - Ahmad Kalhor - Reshad Hosseini
Decentralized Federated Learning in IoT Environments: A Hierarchical Approach
Majid Mohammadpour - Seyedakbar Mostafavi
Improving LoRaWAN Scalability for IoT Applications using Context Information
Hamed Mahmoudi - Behrouz ShahgholiGhahfarokhi
Lempel-Ziv-based Hyper-Heuristic Solution for Longest Common Subsequence Problem
Mahdi Nasrollahi - Reza Shami Tanha - Mohsen Hooshmand
Instance Selection from Skewed Class Distributions by Using the multi-objective optimizer
Mona Moradi - Javad Hamidzadeh
T-Rank: Graph Data Analytics for Urban Traffic Modeling
Alireza Safarpour - Iman Gholampour - Amirhossain Aghazadeh Fard - Seyed Mohammad Karbasi
CSI-Based Human Activity Recognition using Convolutional Neural Networks
Parisa Fard Moshiri - Mohammad Nabati - Reza Shahbazian - Seyed Ali Ghorashi
Semi-automatic Detection of Persian Stopwords using FastText Library
Mohammad Dehghani - Mohammad Manthouri
Hate Sentiment Recognition System For Persian Language
Pegah Shams jey - Arash Hemmati - Ramin Toosi - Mohammad ali Akhaee
more
Samin Hamayesh - Version 41.7.6