0% Complete
Home
/
14th International Conference on Computer and Knowledge Engineering
Optimizing Foreign Exchange Trading Performance Through Reinforcement Machine Learning Framework
Authors :
Ervin Gubin Moung
1
Hani Yasmin Binti Murnizam
2
Maisarah Mohd Sufian
3
Valentino Liaw
4
Ali Farzamnia
5
Lorita Angeline
6
1- Faculty Of Computing And Informatics Universiti Malaysia Sabah (UMS)
2- Faculty of Computing and Informatics University Malaysia Sabah
3- Faculty of Computing and Informatics Universiti Malaysia Sabah
4- Faculty of Computing and Informatics Universiti Malaysia Sabah
5- School of Computing and Engineering University of Huddersfield
6- Faculty of Engineering Universiti Malaysia Sabah
Keywords :
forex،reinforcement learning،trading strategy،A2C،PPO
Abstract :
The ever-changing financial market of foreign exchange attracts many traders. Traders must make wise decisions to avoid significant losses when buying and selling currencies. This project intends to reduce the chance of suffering from loss by providing a trading strategy. The research on developing a trading strategy specifically for the foreign exchange market is still lacking due to the limitation in selecting the best model to create a trading strategy, which is still a working area. Even with current research on trading strategy, it tends not to work overtime due to unpredictable market trends. Therefore, this paper proposed three models using the algorithms A2C, PPO & DQN to find the best strategy in foreign exchange trading, analyze the impact of individual features on the trading strategy and identify the most influential features to develop the best trading strategy using reinforcement learning and finally evaluate the performance on unseen data using Sharpe Ratio, Sortino Ratio, Omega Ratio, Profit & Loss (%), Maximum Drawdown (%) and Cumulative Score. The experiment result showed that the PPO algorithm performed best on 2 of the currency pairs which is GBP/USD and USD/JPY, with a Sharpe Ratio of 0.23 and 0.70, respectively, and a Profit & Loss of 7.4% and 16.78%, respectively, when tested on unseen data. Meanwhile, when tested on unseen data, the A2C model performed the best on the EUR/USD currency pair with a Sharpe Ratio of 0.16 and a Profit & Loss of 3.34%.
Papers List
List of archived papers
Deep Inside Tor: Exploring Website Fingerprinting Attacks on Tor Traffic in Realistic Settings
Amirhossein Khajehpour - Farid Zandi - Navid Malekghaini - Mahdi Hemmatyar - Naeimeh Omidvar - Mahdi Jafari Siavoshani
Novel Insights in Deep Learning for Predicting Climate Phenomena
Mohammad Naisipour - Saghar Ganji - Iraj Saeedpanah - Behnam Mehrakizadeh - Ahmad Reza Labibzadeh
Overview of Electric Vehicles Charging Stations in Smart Grids
Mohammed Wadi - Wisam Elmasry - Mohammed Jouda - Hossein Shahinzadeh - Gevork B. Gharehpetian
An Interactive Approach for Query-based Multi-Document Scientific Text Summarization
Mohammadsadra Nejati - Azadeh Mohebi - Abbas Ahmadi
Optimizing the controller placement problem in SDN with uncertain parameters with robust optimization
Mohammad Kazemi - AhmadReza Montazerolghaem
Efficient Object Detection using Deep Reinforcement Learning and Capsule Networks
Sobhan Siamak - Eghbal Mansoori
City Intersection Clustering and Analysis Based on Traffic Time Series
Mohammad Aminazadeh - Fakhroddin Noorbehbahani
A Federated Learning-Based Hybrid Deep Learning Framework for Enhanced Human Activity Recognition
Jamileh Azmoudeh - Sajjad Arghaee - Parisa Valizadeh - Samaneh Dandani - Iman Havangi - Mohammad Hossein Yaghmaee
Delay Optimization of a Federated Learning-based UAV-aided IoT network
Hossein Mohammadi Firouzjaei - Javad Zeraatkar Moghaddam - Mehrdad Ardebilipour
Persis: A Persian Font Recognition Pipeline Using Convolutional Neural Networks
Mehrdad Mohammadian - Neda Maleki - Tobias Olsson - Fredrik Ahlgren
more
Samin Hamayesh - Version 41.5.3