0% Complete
Home
/
12th International Conference on Computer and Knowledge Engineering
Android Malware Detection using Supervised Deep Graph Representation Learning
Authors :
Fatemeh Deldar
1
Mahdi Abadi
2
Mohammad Ebrahimifard
3
1- Tarbiat Modares University
2- Tarbiat Modares University
3- Tarbiat Modares University
Keywords :
Android application،Attributed function call graph،Autoencoder،Graph neural network،Graph representation learning،Malware detection
Abstract :
Despite the continuous evolution and significant improvement of cybersecurity mechanisms, malware threats remain one of the most important concerns in cyberspace. Meanwhile, Android malware plays a big role in these ever-growing threats. In recent years, deep learning has become the dominant machine learning technique for malware detection and continues to make outstanding achievements. Deep graph representation learning is the task of embedding graph-structured data into a low-dimensional space using deep learning models. Recently, autoencoders have proven to be an effective way for deep representation learning. However, it is not straightforward to apply the idea of autoencoder to graph-structured data because of their irregular structure. In this paper, we present DroidMalGNN, a novel deep learning technique that combines autoencoders with graph neural networks (GNNs) to detect Android malware in an end-to-end manner. DroidMalGNN represents each Android application with an attributed function call graph (AFCG) that allows it to model complex relationships between data. For more efficiency, DroidMalGNN performs graph representation learning in a supervised manner where two autoencoders are trained with benign and malicious AFCGs separately. In this way, it generates two informative embedding vectors for each AFCG in a low-dimensional space and feeds them into a dense neural network to classify the AFCG as benign or malicious. Our experimental results show that DroidMalGNN can achieve good detection performance in terms of different evaluation measures.
Papers List
List of archived papers
Fast and Accurate Motif Discovery in Protein Sequences Using Parallel Processing with OpenMP
Rahele Mohammadi - Mahmoud Naghibzadeh - Abdorreza Savadi
SUT: a new multi-purpose synthetic dataset for Farsi document image analysis
Elham Shabaninia - Fatemeh sadat Eslami - Ali Afkari Fahandari - Hossein Nezamabadi-pour
Dynamic Hand Gesture Recognition with 2DCNN-LSTM and Improved Keyframe Extraction
Narjes Heidari - Javid Norouzi - Mohammad Sadegh Helfroush - Habibollah Danyal
SAT Based Analogy Evaluation Framework For Persian Word Embeddings
Seyed Ehsan Mahmoudi - Mehrnoush Shamsfard
Extreme Gradient Boosting (XGBoost) Regressor and Shapley Additive Explanation for Crop Yield Prediction in Agriculture
Dennis A/L Mariadass - Ervin Gubin Moung - Maisarah Mohd Sufian - Ali Farzamnia
AgeNet-AT: An End-to-End Model for Robust Joint Speaker Age Estimation and Gender Recognition Based on Attention Mechanism and Titanet
Mahsa Zamani Tarashandeh - Amirhossein Torkanloo - Mohammad Hossein Moattar
Load Frequency Control of Geothermal Power Plant Incorporated Two-Area Hydro-Thermal System with AC-DC Lines
Shanker J Gambhire - Malligunta Kiran Kumar - Hossein Shahinzadeh - Mohammad-hossein Fayaz-dastgerdi - B. Srikanth Goud - Ch.Naga sai Kalyan
African Vultures Optimization Algorithm for Optimal Damping Controllers Design in the Electrical Power Grid System
Aliyu Sabo - Theophilus Ebuka Odoh - Samuel Habu - Hossein Shahinzadeh - Farshad Ebrahimi
Segmentation of Coronary Artery Stenosis in X-ray Angiography using Mamba Models
Fatemeh Fouladi - Ali Rostami - Hedieh Sajedi
An Exploratory Study of the Relationship between SATD and Other Software Development Activities
Shima Esfandiari - Ashkan Sami
more
Samin Hamayesh - Version 41.3.1