0% Complete
Home
/
12th International Conference on Computer and Knowledge Engineering
Fatty Liver Level Recognition Using Particle Swarm Optimization (PSO) Image Segmentation and Analysis
Authors :
Seyed Muhammad Hossein Mousavi
1
Vyacheslav Lyashenko
2
Atiye Ilanloo
3
S. Younes Mirinezhad
4
1- Independent Scientist, Tehran, Iran
2- Kharkiv National University of Radio Electronics Media Systems and Technologies Department Kharkiv, Ukraine
3- Faculty of Humanities- Psychology, Islamic Azad University of Rasht, Gilan, Iran
4- Independent Scientist, Tehran, Iran
Keywords :
Fatty Liver Detection،Expert System،PSO،Image Segmentation،Fat Deposit،Hepatic Glycogen
Abstract :
Fatty liver or liver hepatic glycogen is one of the most common disorders of liver, nowadays. Clinical detection of this disorder by human expert is increasing as our lifestyle leads us toward this phenomenon. So, making a fast and robust expert system for fatty liver detection is essential in each clinic and that’s why we intended to make one. Proposed expert system, works based on variety of image processing techniques and algorithms to detect fatty liver and recognize its level by four markers. Four segmentation techniques of Otsu, Watershed, K-Means and Particle Swarm Optimization (PSO) are employed to determine disorder level. Performance metrics of Accuracy, F-Score and IoU or Jaccard evaluated the robustness of the proposed system. Finally, fatty liver level is calculated based on amount of fat deposits inside segmented image. Experiments are conducted on multiple data sample in high resolution with microscope zoom bigger or equal of 200 which are collected from the internet. All performance metrics and comparisons returned satisfactory results in comparing with traditional methods. Proposed system could achieve average accuracy value of 0.922 for all samples comparing with ground truth data. Additionally, F-Score and IoU performance metrics returned values are 0.872 and 0.907, respectively
Papers List
List of archived papers
A large input-space-margin approach for adversarial training
Reihaneh Nikouei - Mohammad Taheri
Lempel-Ziv-based Hyper-Heuristic Solution for Longest Common Subsequence Problem
Mahdi Nasrollahi - Reza Shami Tanha - Mohsen Hooshmand
An Analysis of Botnet Detection Using Graph Neural Network
Faezeh Alizadeh - Mohammad Khansari
Extreme Gradient Boosting (XGBoost) Regressor and Shapley Additive Explanation for Crop Yield Prediction in Agriculture
Dennis A/L Mariadass - Ervin Gubin Moung - Maisarah Mohd Sufian - Ali Farzamnia
Design and Simulation of a Low PDP Full Adder by Combining Majority Function and TGDI Technique in CNTFET Technology
Mahsa Mohammadi
Cardiology Disease Diagnosis by Analyzing Histological Microscopic Images Using Deep Learning
Maria Salehpanah - Jafar Tanha - Zahra Jafari - SeyedEhsan Roshan - Sajad Rezaei
Fast and Accurate Motif Discovery in Protein Sequences Using Parallel Processing with OpenMP
Rahele Mohammadi - Mahmoud Naghibzadeh - Abdorreza Savadi
Financial Market Prediction Using Deep Neural Networks with Hardware Acceleration
Dara Rahmati - Mohammad Hadi Foroughi - Ali Bagherzadeh - Mehdi Foroughi - Saeid Gorgin
A Survey on Semi-Automated and Automated Approaches for Video Annotation
Samin Zare - Mehran Yazdi
ExaAEC: A New Multi-label Emotion Classification Corpus in Arabic Tweets
Saeed Sarbazi-Azad - Ahmad Akbari - Mohsen Khazeni
more
Samin Hamayesh - Version 42.4.1