0% Complete
Home
/
12th International Conference on Computer and Knowledge Engineering
Fatty Liver Level Recognition Using Particle Swarm Optimization (PSO) Image Segmentation and Analysis
Authors :
Seyed Muhammad Hossein Mousavi
1
Vyacheslav Lyashenko
2
Atiye Ilanloo
3
S. Younes Mirinezhad
4
1- Independent Scientist, Tehran, Iran
2- Kharkiv National University of Radio Electronics Media Systems and Technologies Department Kharkiv, Ukraine
3- Faculty of Humanities- Psychology, Islamic Azad University of Rasht, Gilan, Iran
4- Independent Scientist, Tehran, Iran
Keywords :
Fatty Liver Detection،Expert System،PSO،Image Segmentation،Fat Deposit،Hepatic Glycogen
Abstract :
Fatty liver or liver hepatic glycogen is one of the most common disorders of liver, nowadays. Clinical detection of this disorder by human expert is increasing as our lifestyle leads us toward this phenomenon. So, making a fast and robust expert system for fatty liver detection is essential in each clinic and that’s why we intended to make one. Proposed expert system, works based on variety of image processing techniques and algorithms to detect fatty liver and recognize its level by four markers. Four segmentation techniques of Otsu, Watershed, K-Means and Particle Swarm Optimization (PSO) are employed to determine disorder level. Performance metrics of Accuracy, F-Score and IoU or Jaccard evaluated the robustness of the proposed system. Finally, fatty liver level is calculated based on amount of fat deposits inside segmented image. Experiments are conducted on multiple data sample in high resolution with microscope zoom bigger or equal of 200 which are collected from the internet. All performance metrics and comparisons returned satisfactory results in comparing with traditional methods. Proposed system could achieve average accuracy value of 0.922 for all samples comparing with ground truth data. Additionally, F-Score and IoU performance metrics returned values are 0.872 and 0.907, respectively
Papers List
List of archived papers
Depression Diagnosis Using Optimization of Nonlinear EEG Features Based on Parametric Learning Tactics
Ali Asadi Zeidabadi - Melika Changizi - Mahdi Zolfagharzadeh Kermani - Sara Bargi Barkouk
Experimental evaluation and comparison of anti-pattern detection tools by the gold standard
Somayeh Kalhor - Mohammad reza Keyvanpour - Afshin Salajegheh
A Deep CNN Model Based Ensemble Approach for Semantic and Instance Segmentation of Indoor Environment
Sajad Rezaei - Jafar Tanha - Zahra Jafari - SeyedEhsan Roshan - Mohammad-Amin Memar Kochebagh
Spatial-channel attention-based stochastic neighboring embedding pooling and long short term memory for lung nodules classification
AHMED SAIHOOD - HOSSEIN KARSHENAS - AHMADREZA NAGHSH NILCHI
Optimization of quantum secret sharing communication using corresponding bits
Mahsa Khorrampanah - Mohammad Bolokian - Monireh Houshmand
An Overview of Regression Methods in Early Prediction of Movie Ratings
Houmaan Chamani - Zhivar Sourati Hassanzadeh - Behnam Bahrak
Community-Based QoE Enhancement for User-Generated Content Live Streaming
Reza Saeedinia - S.Omid Fatemi - Daniele Lorenzi - Farzad Tashtarian - Christian Timmerer
Information Theoretic Learning-based Deep Embedded Clustering (ITL-DEC)
Hoda Shad - Mona Zamiri - Tahereh Bahreini - Reza Monsefi - Ghoshe Abed Hodtani
Paddy Plant Stress Identification Using Few-Shot Learning Framework
Ervin Gubin Moung - Pavindrah Naidu a/l Narayanasamy Naiidu - Maisarah Mohd Sufian - Valentino Liaw - Ali Farzamnia - Lorita Angeline
A Review on Machine Learning Methods for Workload Prediction in Cloud Computing
Mohammad Yekta - Hadi Shahriar Shahhoseini
more
Samin Hamayesh - Version 42.2.1