0% Complete
Home
/
12th International Conference on Computer and Knowledge Engineering
An optimal workflow scheduling method in cloud-fog computing using three-objective Harris-Hawks algorithm
Authors :
Ahmadreza Montazerolghaem
1
Maryam Khosravi
2
Fatemeh Rezaee
3
1- University of Isfahan
2- university of isfahan
3- university of isfahan
Keywords :
Internet of Things،Cloud-Fog computing،Harris hawks optimization algorithm،Workflow scheduling،DVFS
Abstract :
Today, the Internet of Things (IoT) use to collect data by sensors, and store and process them. As the IoT has limited processing and computing power, we are turning to the integration of the cloud and the IoT. The cloud computing processes the large data at high speed, but sending this large data requires a lot of bandwidth. Therefore, we use fog computing, which is close to IoT devices. In this case, the delay is reduced. Both cloud and fog computing are used to increasing performance of IoT. Job scheduling of IoT workflow requests based on cloud-fog computing plays a key role in responding to these requests. Job scheduling in order to reduce makespan time, is very important in realtime system. Also, reducing the energy consumption improves the performance of the system. In this article, three-objective Harris Hawks Optimizer (HHO) scheduling algorithm is proposed in order to reduce makespan time, energy consumption and increase reliability. Also, dynamic voltage frequency scaling (DVFS) has been used to reduce the energy consumption, which reduces the frequency of the processor. Then HHO is compared with other algorithms such as Whale Optimization Algorithm (WOA), Firefly Algorithm (FA) and Particle Swarm Optimization (PSO) and the proposed algorithm shows better performance on experimental data. The proposed method has achieved an average reliability of 83%, energy consumption of 14.95 KJ, and makespan of 272.5 seconds.
Papers List
List of archived papers
DPRNN-FORMER: AN EFFICIENT WAY TO DEAL WITH BLIND SOURCE SEPARATION
Ramin Ghorbani - Sajad Haghzad Klidbary
Link Prediction for Recommendation based on Complex Representation of Items Similarities
Masoumeh Alinia - Seyed Mohammad Hossein Hasheminejad - Hadi Shakibian
AVID: A VARIATIONAL INFERENCE DELIBERATION FOR META-LEARNING
Alireza Javaheri - Arsham Gholamzadeh Khoee - Saeed Reza Kheradpisheh - Hadi Farahani - Mohammad Ganjtabesh
Vision-Based Obstacle Avoidance in Drone Navigation using Deep Reinforcement Learning
Pooyan Rahmanzadeh Gervi - Ahad Harati - Sayed Kamaledin Ghiasi-Shirazi
Semi-automatic Detection of Persian Stopwords using FastText Library
Mohammad Dehghani - Mohammad Manthouri
Design and Simulation of a Low PDP Full Adder by Combining Majority Function and TGDI Technique in CNTFET Technology
Mahsa Mohammadi
Hybrid Flow-Rule Placement Method of Proactive and Reactive in SDNs
Mohammadreza Khoobbakht - Mohammadreza Noei - Mohammadreza Parvizimosaed
Load Frequency Control of Geothermal Power Plant Incorporated Two-Area Hydro-Thermal System with AC-DC Lines
Shanker J Gambhire - Malligunta Kiran Kumar - Hossein Shahinzadeh - Mohammad-hossein Fayaz-dastgerdi - B. Srikanth Goud - Ch.Naga sai Kalyan
Span-prediction of Unknown Values for Long-sequence Dialogue State Tracking
Marzieh Naghdi Dorabati - Reza Ramezani - Mohammad Ali Nematbakhsh
Energy-Aware Dynamic Digital Twin Placement in Mobile Edge Computing
Mahdi Hematyar - Zeinab Movahedi
more
Samin Hamayesh - Version 42.3.2